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Missing data are one of the central problem that one encounter during the 

analysis of longitudinal data. If we fill in missing values with wrong data, we are 

adding bias. 2



Imputations

What is imputations?

What is multiple imputations?
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The process of replacing missing data with substituted 

values.

Replace missing value with more than one imputed value, randomly 

drawn from a distribution of possible value.



Time- Dependent covariates

Time – dependent covariates or time – varying covariates.

What is time – varying covariates?

Variables whose values can change across time

Example of time – varying covariates

C-reactive protein (CRP) and smoking status
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Classification Of Missing Data

MISSING 

DATA
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Missing completely at 

random (MCAR)
Missing at random 

(MAR)

Missing not at random 

(MNAR)



MCAR
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The missing data mechanism depends neither on 

observed nor on unobserved values.



MAR
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The missing data mechanism depends only on 

the observed values (and not on the unobserved 

values).



MNAR
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The missing data mechanism depends on the 

unobserved values (and perhaps also on 

observed values).



https://www.jclinepi.com/article/S0895-4356(17)31193-9/fulltext
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Introduction
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Introduction

Analysing longitudinal data over cross – sectional data is the

possibility to describe individual profiles overtime.

Characteristics of subject may vary over time.

Problem  missing data during longitudinal data analysis.
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Introduction

 This article provide : Research for practical guidelines to handle the most common

missing repeated measurements data problems in observational studies.

 Key :

 How to analyse longitudinal data if there are missing observation in the outcome only and / or if

missing observation are extended to independent variables too.

 Practicalities in producing imputations when there are many time – varying variables and

repeated measurements.

 Some common statistical package SPSS, SAS and R that are ready to use.

12



Introduction
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How to handle missing data in longitudinal study ?

Simulations study

Maastricht study on long-term 

dementia care environments (MLTD)



Case Study
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Case Study

 Maastricht study on long-term dementia care environments (MLTD).

 This study investigated the effect of innovative dementia care environments (i.e. small 

scale, homelike) compared with traditional nursing homes (i.e. large scale) on residents’ 

daily lives. 

 Case study : To compare the mood

 N on this study is115

The elderly living traditional large – scale 

wards (LSW)
The elderly living innovative small –

scale wards
VS
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Case Study

 Randomized observation schedule. Every participants observed for 1 minutes during 20 

minutes period within 4.5 hours observation.

 Get break half hour in the each block.

 Each participants was observed on 7 days:

 Two weekday mornings (07.00 – 11.00)

 Two weekday afternoons (11.30 – 16.00)

 Two weekday evenings (16.00 – 20.30)

 One Saturday afternoon (16.00 – 20.30)

 Total = 12 (observation minutes per block in a day) x 7 (observations days) = 84 moment 

per participants. 16



Case Study

Mood and engagement in activity (activity) assessed by the Maastricht 

Electronic Daily Life Observation tool.

 7 range of mood:

 1 = great sign of negative mood

 7 = very high positive mood

 The variable of activity measures :

 Household activity

Musical activity
17



Case Study

What is missing in this data set?

Outcome mood

Activity : 5 – 25 %

Observation across time (one dayparts) : 1 – 18%
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Method
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Method

Naïve Method :

Complete case analysis (CCA)

All missing values are deleted.

Available case analysis (AC)

Calculate observed values of the relevant variables(s).

Mean substitution (MS)

Missing value replace by arithmetic mean of that variables. 
20



Method

Naïve method :

Missing indicator method (MIM)

Fill missing observation with fixed number and then add a dummy 

variable to the analysis model to indicate whether value of that 

variable was missing.  

Last observation carried forward (LOCF)

Use the last observation to fill the next missing value.
21



Method

Multiple Imputations:

This method will replace missing value with more than one imputed 

value, randomly drawn from a distribution of possible value that 

determined using information from data. 

Condition under MAR and MCAR.

Fully condition Specification (FCS) or chain equations is one popular 

method.

FCS will imputes missing data on a variable – by – variable. 
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Statistical Analysis

Simulation Study
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Statistical Analysis

 Longitudinal design with three times point:

Correlated binary variables X1, X2, and X3 were generated with equal marginal 

probabilities (i.e. P(X1 = 1) = P(X2 = 1) = P (X3 = 1) = 0.5)

 Also have equal correlation (i.e. cor(X1,X2) = cor(X1,X3) = cor(X2,X3) = 0.5)

 Binary variables X1, X2 and X3 generated using R package ‘bindata’.

 Y generate using random intercept model. 
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𝑌𝑖𝑡 = 𝛽0𝑖 + 𝛽1𝑋𝑖𝑡 + 𝜀𝑖𝑡



Statistical Analysis

 I = 1 … 115 (subject)

 t = 1, 2, 3 (time)

 𝑢𝑖 = the random intercept (normal distribution with mean zero)

 𝜀𝑖𝑡 = the residual

 Note : the covariance structure implies that the outcome variable Y1, Y2, 

and Y3 are correlated.
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𝑌𝑖𝑡 = 𝛽0𝑖 + 𝛽1𝑋𝑖𝑡 + 𝜀𝑖𝑡



Scenario 1

Missing observation in the both outcome and independent 

variable under MCAR.

The outcome Y2 or Y3 (or both) were missing, constant probability 0.3.

Independent variable X2 or X3 (or both) were missing with same 

constant probability.

In total, 50% of the case was incomplete. The outcome and 

independent variables were never jointly.
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Analysis and Result

Abbreviations: AC, available cases; CCA, complete case analysis; CI, confidence interval; LOCF, last observation carried forward; MI, multiple imputation;

MIM, missing indicator method; MS, mean substitution; REF, reference.
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Scenario 2

Missing observation in the outcome under MAR.

Y2 or Y3 (or both) were missing. 

Y2 was missing if 𝑌1 ≤  𝑌1 ; Y3 was missing if 𝑌2 ≤  𝑌2.

The probability of missingness for Y2 depends only on observed values of 

Y1.

The probability of missingness for Y3 depends only on observed values of 

Y2.

Approximately 50% of the outcome variables was incomplete. 28



Result Scenario 2

Abbreviations: AC, available cases; CCA, complete case analysis; CI, confidence interval; LOCF, last observation carried forward; MI, multiple imputation;

MIM, missing indicator method; MS, mean substitution; REF, reference.
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Scenario 3

Missing observations in the independent variable under MAR.

Independent variables X2 and X3 (Or both) were missing.

X2 was missing if Y2 was smaller than or equal to its first quartile.

X3 was missing if Y3 was smaller than or equal to its first quartile.

Approximately 40% of independent variables was incomplete.

Comparable MAR mechanism as in scenario 2.
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Result Scenario 3

Abbreviations: AC, available cases; CCA, complete case analysis; CI, confidence interval; LOCF, last observation carried forward; MI, multiple imputation;

MIM, missing indicator method; MS, mean substitution; REF, reference.
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Scenario 4

Missing observation in the both outcome and independent 

variable under MAR. 

Missing values Y2 or Y3 created as in scenario 2, or missing value on X2 or 

X3 where created as in scenario 3.

But not on the both

Independent variables are incomplete

Approximately 50% of cases were incomplete

Comparable MAR mechanism as in scenario 2 or scenario 3. 32



Result Scenario 4

Abbreviations: AC, available cases; CCA, complete case analysis; CI, confidence interval; LOCF, last observation carried forward; MI, multiple imputation;

MIM, missing indicator method; MS, mean substitution; REF, reference.
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Result from Scenario 1 - 4

 During 4 scenarios :

 CCA can produce bias under MAR but can produce unbiased estimates under MCAR.

Scenario 1

 AC analysis were unbiased when the outcome had missing observation. However will leaded 

biased estimated and lower coverage rare with missing data in the independent variables.

Scenario 2, 3 and 4 particularly 𝛽0

 Mean Substitutions produced biased estimates with lower coverage rates.

Bias in all scenarios
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Result from Scenario 1 - 4

 MIM only valid if missing data of the outcome conditional on the other independent variables. 

Also cannot handle missing observation in the outcome. 

Bad performance in scenario 3

 LOCF leading biased estimates on all scenario.

Bad on the all situations

 MI provide best performance with negligible bias and acceptable coverage rates [~ 95%].

Work on the all scenario
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Statistical Analysis

Maastricht study on long-term dementia care environments (MLTD)
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Statistical Analysis for MLTD

Compare the mood of participants in the large – scale wards and small –

scale wards.

 Substantive model for analysis  random intercept 

Outcome variable : mood 

 Independent variables : 

Large scale ward indicator (LSW = 1)

Activation indicator (activity = 1)

Part of the day (seven categories)

Repeated measurement of participants ( time tread as continuous) 37



Statistical Analysis for MLTD

Multiple Imputations:

Fully condition Specification (FCS) or chain equations.

Using R – Package MICE

Setting :

Number of imputation set to m = 20.

Data is formatted in wide format.

Applied “Just Another Variable”  and impute it separately.

The outcome is Mood10 ( mood multiple by a factor 10) 38



Statistical Analysis for MLTD

Tricks to work on the MLTD longitudinal study:

Data is formatted in wide format

Handle over parameterization

Apply “Just Another Variable” and impute it separately
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Statistical Analysis for MLTD

Wide – format in MLTD :

 Each person occupies only one record in the dataset, and observation made at 

different time points are coded as different column.

 Because there 84 repeated measurements in MLTD:

Mood : 84

Activity : 84

Social Interaction : 84

 Interaction where activity and social interaction are involved in the imputation model.

 Total more than 300 time – varying covariates in wide formats.

 N = 115 subjects 40



Statistical Analysis for MLTD

Handle over parameterization

This situation happen when the imputation include all 

variables as predictors for a particular variable cannot be 

fitted due to over parameterization.

In FCS  for mood at time 1 need to imputed

Mood, activity, all interaction between activity and time

Use from time 2, 3 … at time 84
41



Statistical Analysis for MLTD

Applied “Just Another Variable” (JAV) and impute it separately:

The imputation of interaction term with missing value.

Example : Activity has missing observation and hence, its interaction 

with LSW has missing observations too.

In this study JAV  to imputed the interaction between Activity ( social 

interaction) and LSW
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Statistical Analysis for MLTD

Why R – package MICE?

SPSS

SAS

R – package MICE
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Statistical Analysis for MLTD
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SPSS

Default FCS

How interaction of categorical variables with missing values 

are handled?

Not flexible enough to customize the variable’s role



Statistical Analysis for MLTD
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SAS

FCS approach can optionally be used

Control the role for each variable separately

Interaction terms are passively imputed



Statistical Analysis for MLTD

46

R -

MICE

FCS approach

Customizable the role of variable

JAV method can be use
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Discussion
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Key Finding

 Two situation require different approach :

When missing data on the outcome only (the independent variables are fully 
observed)  use likelihood method and multiple imputation isn’t important. 

When missing data in the outcome and independent variables too  multiple 

imputations 

Problem would be arise when there are more columns (variables per 
time points) than rows (subjects)  wide format

R – MICE is recommended application.  
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Limitation 

Multilevel imputation has not been performed in this study. This 

study uses only standard FCS.

Future study use multilevel imputations might be deal with the 

problem of higher level imputations. 
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Thank you

Maria
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