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Abstract
Objective: Causal treatment effects are estimated at the population level in randomized controlled trials, while clinical decision is often
to be made at the individual level in practice. We aim to show how clinical prediction models used under a counterfactual framework may
help to infer individualized treatment effects.

Study Design and Setting: As an illustrative example, we reanalyze the International Stroke Trial. This large, multicenter trial enrolled
19,435 adult patients with suspected acute ischemic stroke from 36 countries, and reported a modest average benefit of aspirin (vs. no
aspirin) on a composite outcome of death or dependency at 6 months. We derive and validate multivariable logistic regression models that
predict the patient counterfactual risks of outcome with and without aspirin, conditionally on 23 predictors.

Results: The counterfactual prediction models display good performance in terms of calibration and discrimination (validation c-sta-
tistics: 0.798 and 0.794). Comparing the counterfactual predicted risks on an absolute difference scale, we show that aspirinddespite an
average benefitdmay increase the risk of death or dependency at 6 months (compared with the control) in a quarter of stroke patients.

Conclusions: Counterfactual prediction models could help researchers and clinicians (i) infer individualized treatment effects and (ii)
better target patients who may benefit from treatments. � 2020 Elsevier Inc. All rights reserved.
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1. Introduction

The randomized controlled trial (RCT) has long been recog-
nized as the standard experimental method for providing clin-
ical evidence of therapeutic intervention [1]dyet stated at the
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population level, while clinical decision-making is often made
at the individual level [2e5]. As an individual treatment effect
is not directly observed in RCTs, an average treatment effect is
commonly estimated, thereby assuming a homogeneous
response to the treatment, which is unlikely to hold in clinical
practice. Given this deficiency of precision, a medicine effec-
tive on average can improve outcomes in most patients,
although worsening outcomes in a minority of patientsdthe
estimation of these respective proportions being regrettably ne-
glected from RCT analysis. This duality between global
evidence-based medicine and personalized decision-making
therefore emphasizes the need for methods that can provide
patient-level evidence about treatment effects.

To address this issue, subgroup analyses have been used
to stratify the treatment effect by subpopulations [6,7].
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What is new?

Key findings?
� We illustrate how clinical prediction models used

under a counterfactual framework could allow the
inference of individualized treatment effects;

What this adds to what was known?
� Counterfactual prediction models return, given a pa-

tient, the predicted risks of outcome under different
scenarios (e.g. patient risk of outcome under treat-
ment vs. patient risk of outcome under control);

What is the implication and what should change
now?
� The comparison of counterfactual predicted risksmay

help refine clinical therapeutic decision-making at the
patient level, as shown in this illustration.
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However, these approaches are deemed suboptimal and
prone to multiple testing [8,9]. Exploring one variable at
a time, based on patient characteristics that are believed
to modify the treatment effect, is often limited when many
underlying characteristics are involved and may lead to
false-positive findings [8,9]. Recent methodological devel-
opments have led to considering multivariable predictive
approaches to treatment effect heterogeneity [10,11]. In this
article, we illustrate how the methodology of clinical pre-
diction models (i.e. non-causal models) used under a coun-
terfactual framework may allow a causal interpretation of
individualized treatment effects.

We reanalyze the International Stroke Trial (IST) [12],
which evaluated the effect of aspirin in stroke, a disease
responsible for 6.7 million deaths in 2012 according to
the World Health Organization [13]. With more than 65%
of strokes being ischemic [14e16], effective treatments
are required, particularly in the large number of patients
who cannot receive intravenous thrombolysis. In Western
countries, guidelines for the management of acute ischemic
stroke recommend the use of aspirin [14,17,18], which
demonstrated a clinical, albeit moderate, benefit. Nonethe-
less, it remains unclear whether this treatment is beneficial
to all patients. The original article of the IST reported no
clear evidence from the multiple subgroup analyses [12].
In this reanalysis, we derive models that predict the patient
counterfactual risks of death or dependency at 6 months af-
ter strokedwith and without aspirin. We aim to show how
the comparison of counterfactual risks of outcome could
refine clinical decision-making on therapeutic strategy,
given patient clinical characteristics.
2. Methods

2.1. Data and settings

The IST was a large, multicenter trial assessing the ef-
fect of aspirin and heparin on a primary (composite)
outcome of death or dependency at 6 months after stroke,
using a 2 � 2 factorial design [12]. It enrolled 19,435 adults
with acute ischemic stroke from 36 countries and collected
over 99% complete follow-up data. The data set from this
RCT was recently released under an open-access license
on behalf of the International Stroke Trial Collaborative
Group [19]. As we performed a secondary analysis, our
study was exempt from patient consent form collection.
The trial originally reported a nonsignificant, moderate
average risk reduction in the primary outcome at 6 months
in the aspirin group (62.2% vs. 63.5%, two-tailed P5 0.07)
[12]. To estimate the individualized responses to aspirin, we
used the methodology of clinical prediction models under a
counterfactual framework. This approach aligns with prece-
dents described in the statistical literature, to which we
invite readers to refer for further theoretical justification
and technical contents [20e27].

2.2. Counterfactual prediction models

Let us define Z the treatment status: Z51 denotes
‘‘treated’’, and Z50 denotes ‘‘control’’. Following Rubin’s
causal model, let Yð1Þ and Yð0Þ denote the potential out-
comes (or ‘‘counterfactuals’’) that would be observed if in-
dividuals were to receive the treatment or control,
respectively [28]. In the IST [12], Yð1Þ denotes the risk of
death or dependency at 6 months under aspirin, while Yð0Þ
denotes that risk under control (i.e. without aspirin). For a
particular individual i, the comparison of these two counter-
factual outcomes defines the individual treatment effect:
TEi5Yð1Þi � Yð0Þi: (Note, this effect can also be expressed
as a ratio.) In an RCT, as an individual can only be either
treated or untreated, according to their actual treatment
allocation, the individual treatment effect cannot be
measured directly (an issue referred to as ‘‘the fundamental
problem of causal inference’’. [29]) Clearly, only Yð1Þ is
observed in the aspirin arm, and only Yð0Þ is observed in
the control arm. Denoting the observed outcome by Y,
one can write: Y5ZYð1Þ þ ð1�ZÞYð0Þ (which is referred
to as ‘‘consistency’’. [30]).

Furthermore, let X denote the baseline covariates. Given
complete randomization, Z is assumed independent from X,
but also from Yð1Þ and Yð0Þ. In this sense, treated and control
patients are assumed exchangeable: Both potential out-
comes and covariates should be similarly distributed across
the two groups. Formally, one can write ZtðX; Yð1Þ; Yð0ÞÞ,
which entails ZtYð1ÞjX and ZtYð0ÞjX (following the rules
of conditional independence [31])dwhich can also be
rewritten as E

�
Yð1ÞjX; Z51

�
5E

�
Yð1Þ

��X �
and

E
�
Yð0ÞjX; Z50

�
5 E

�
Yð0Þ

��X �
. Thus, under consistency,

one can estimate EðYð1ÞjXÞ by fitting a prediction model
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to the treated arm, and EðYð0ÞjXÞ by fitting a prediction
model to the control arm. For individual i with characteris-
tics xi, the first model returns bEðYð1ÞijxiÞ (i.e. patient predic-
tion under aspirin). For the same individual, the second
model returns bEðYð0ÞijxiÞ (i.e. patient prediction without
aspirin). The two prediction models (which are noncausal
because they do not model the relationship between the
treatment and the outcome) can then be used to infer the
causal treatment effect: EðYð1ÞjXÞ� EðYð0ÞjXÞ5 EðYð1Þ �
Yð0ÞjXÞ. This treatment effect is said ‘‘individualized’’
(henceforth, ‘‘individualized treatment effect’’, ITE)
because it is conditional on X, the set of patient baseline
variables.

This general method can be regarded as similar to the
parametric g-formula proposed by Robins [32], with two
differences: (i) as we focus on the ITE, we spare the step
of treatment effect averaging for a causal interpretation at
the population level; (ii) treated and control patients are
assumed exchangeabledgiven randomizationdregardless
of the set of covariates X included in the prediction models.

We applied this approach to reanalyze the IST.
2.3. Statistical analysis

Before developing the counterfactual prediction models,
we split the initial sample of the IST at the hospital center
level to generate a derivation sample and a validation sam-
ple. By creating two independent sets of patients hospital-
ized in structures within which practices and
measurements were likely to differ, this procedure allowed
us to conduct a geographical validation (sometimes called
‘‘broad’’ validation) of the prediction models [33]. We
defined a split ratio of 2:1 which ensured that both samples
included enough outcomes to avoid overfitting in derivation
(O50 events per variable) [34], and to precisely quantify
model performance during validation (O200 events) [35].

We fit separate logistic regressions, using 23 predictors
(no variable selection), to predict the occurrence of death
or dependency at 6 months to each treatment arm (aspirin
and control) of the derivation sample. The predictors
included in both models were the covariates that the trial
investigators had specified for subgroup analyses (i.e. fac-
tors originally presumed to be responsible for heterogene-
ity). The nonlinearity of the continuous variables was
handled using restricted cubic splines [36]. Any covariate
included in one of the two regressions was also included
in the other regression to allow differences in covariate ef-
fect across the two models (i.e., effect modification). The
large sample size of the IST allowed us to include this large
set of covariates. (Note, this procedure should not be con-
ducted without precaution in small samples, in which
penalization of regression models might be appropriate
for covariate selection. [37]) Given the low rate of missing
data, the analysis was performed in complete case data.

We used the two models to predict the probability of the
counterfactual outcomes, bPðYð1Þ 51jXÞ and bPðYð0Þ 5 1jXÞ,
that would have occurred within 6 months for all individuals
who had been treated and not with aspirin, respectively. To
evaluate predictive ability of both models, we calculated the
discrimination (c-statistic) in the derivation and validation
samples and calibration (slope and intercept) in the validation
sample (intercept and slope will be 0 and 1 by definition for
the derivation sample). We also graphically assessed the cali-
bration, using local regression curves [38]. Ninety-five
percent confidence intervals (95% CI) were calculated by
bootstrapping (500 iterations). We transparently reported
our analysis following the TRIPOD statement [33,39].

We calculated the dITE as the difference between the two
counterfactual prognoses returned by the models, which
corresponds to an absolute risk difference.
3. Results

Of the 19,435 included patients, 6,000 patients (62.2%) in
the aspirin arm and 6,125 patients (63.5%) in the control arm
experienced the primary composite outcome (absolute risk
difference 5 �1.3%, 95% CI: �2.6% to þ0.1%, P 5 0.07;
number needed to treat: 77 patients).

After random splitting at the hospital level, the derivation
sample included 12,598 patients, while the validation
included 6,937. The baseline characteristics at randomiza-
tion are reported in Table 1. The average treatment effects
were equal to �1.3% (95% CI: �3.0% to þ0.4%,
P 5 0.13) and �1.1% (95% CI: �3.5% to þ1.2%,
P5 0.33), in the derivation and validation data, respectively.

In the derivation sample, we fit a regression model with
23 covariates to each arm. The aspirin arm model included
59 nonevents per degree of freedom and the control arm
model included 58 nonevents per degree of freedom. There
were 557 missing values (4.4%) across the primary
outcome and the 23 covariates. The two models are pre-
sented in Table 2. The predictive performance of both
models was good, as measured by discrimination and cali-
bration (Figure 1). Performance was consistent in both the
derivation and the validation samples, with no concerns of
overfitting. The model predicting the outcome in the pres-
ence of aspirin had a c-statistic of 0.815 (95% CI: 0.805
to 0.825) in the derivation sample and 0.798 (95% CI:
0.782 to 0.813) in the validation sample. The calibration
slope in the validation sample was 1.009 and the calibration
intercept was �0.011. Similarly, the model predicting the
outcome in the absence of aspirin had a c-statistic of
0.799 (95% CI: 0.788 to 0.811) in the derivation sample
and 0.794 (95% CI: 0.778 to 0.809) in the validation sam-
ple, with a calibration slope of 1.026 and an intercept of
�0.005 in the validation sample.

We estimated the ITE for each patient as the difference
between the counterfactual risks of outcome under aspirin
and control, returned by the two prediction models. As de-
picted in Figure 2, we found that aspirin effect may have
been beneficial for certain patients (e.g., reducing the risk



Table 1. Baseline characteristics at randomization and outcomes

Variable

Derivation sample Validation sample

Aspirin 6,260 (49.7%) Control 6, 338 (50.3%) Aspirin 3, 460 (50.6%) Control 3 377 (49.4%)

Age (y) 74 (65e80) 74 (65e81) 73 (65e80) 73 (65e80)

Delay (h) 18 (9e28) 19 (9e29) 20 (10e30) 20 (9e30)

Systolic blood pressure (mmHg) 160 (140e180) 160 (140e180) 160 (140e180) 160 (140e180)

Male sex 3,278 (52.4%) 3,358 (53.0%) 1,875 (54.2%) 1,896 (56.1%)

Computerized tomography (CT) 4,175 (66.7%) 4,228 (66.7%) 2,316 (66.9%) 2,305 (68.3%)

Infarct visible at CT 2,036 (32.5%) 2,146 (33.9%) 1,140 (32.9%) 1,093 (32.4%)

Atrial fibrillation 1,092 (17.4%) 1,081 (17.1%) 530 (15.3%) 466 (13.8%)

Missing value 278 (4.4%) 279 (4.4%) 215 (6.2%) 212 (6.3%)

Aspirin within previous 3 d 1,317 (21.0%) 1,340 (21.1%) 644 (18.6%) 639 (18.9%)

Missing value 278 (4.4%) 279 (4.4%) 215 (6.2%) 212 (6.3%)

Face deficit

Not assessable 89 (1.4%) 84 (1.3%) 34 (1.0%) 40 (1.2%)

No 1,679 (26.8%) 1,658 (26.2%) 888 (25.7%) 864 (25.6%)

Yes 4,492 (71.8%) 4,596 (72.5%) 2,538 (73.3%) 2,473 (73.2%)

Arm/hand deficit

Not assessable 39 (0.6%) 43 (0.7%) 16 (0.5%) 25 (0.7%)

No 872 (13.9%) 870 (13.7%) 476 (13.7%) 449 (13.3%)

Yes 5,349 (85.5%) 5,425 (85.6%) 2,968 (85.8%) 2,903 (86.0%)

Leg/foot deficit

Not assessable 94 (1.5%) 77 (1.2%) 39 (1.1%) 45 (1.3%)

No 1,469 (23.5%) 1,473 (23.2%) 803 (23.2%) 757 (22.4%)

Yes 4,697 (75.0%) 4,788 (75.6%) 2,618 (75.7%) 2,575 (76.3%)

Dysphasia

Not assessable 190 (2.9%) 220 (3.5%) 91 (2.6%) 83 (2.5%)

No 3,250 (53.2%) 3,348 (52.8%) 1,922 (55.6%) 1,822 (53.9%)

Yes 2,820 (43.9%) 2,770 (43.7%) 1,447 (41.8%) 1,472 (43.6%)

Hemianopia

Not assessable 1,391 (22.2%) 1,375 (21.7%) 596 (17.2%) 583 (17.2%)

No 3,896 (62.2%) 3,949 (62.3%) 2,301 (66.5%) 2,248 (66.6%)

Yes 973 (15.6%) 1,014 (16.0%) 563 (16.3%) 546 (16.2%)

Visuospatial disorder

Not assessable 1,181 (18.9%) 1,192 (18.8%) 534 (15.4%) 541 (16.0%)

No 4,037 (64.5%) 4,076 (64.3%) 2,379 (68.8%) 2,317 (68.6%)

Yes 1,042 (16.6%) 1,070 (16.9%) 547 (15.8%) 519 (15.4%)

Brainstem/cerebellar signs

Not assessable 571 (9.1%) 584 (9.2%) 226 (6.5%) 211 (6.3%)

No 4,983 (79.6%) 5,049 (79.7%) 2,865 (82.8%) 2,807 (83.1%)

Yes 706 (11.3%) 705 (11.1%) 369 (10.7%) 359 (10.6%)

Other deficit

Not assessable 419 (6.7%) 423 (6.7%) 214 (6.2%) 193 (5.7%)

No 5,455 (87.1%) 5,502 (86.8%) 3,026 (87.4%) 2,984 (88.4%)

Yes 386 (6.2%) 413 (6.5%) 220 (6.4%) 200 (5.9%)

Consciousness

Fully alert 4,742 (75.7%) 4,803 (75.8%) 2,721 (78.7%) 2,655 (78.6%)

Drowsy 1,437 (23.0%) 1,447 (22.8%) 690 (19.9%) 680 (20.1%)

Unconscious 81 (1.3%) 88 (1.4%) 49 (1.4%) 42 (1.3%)

Stroke type

PACS 2,538 (40.5%) 2,568 (40.5%) 1,382 (39.9%) 1,367 (40.5%)

(Continued )
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Table 1. Continued

Variable

Derivation sample Validation sample

Aspirin 6,260 (49.7%) Control 6, 338 (50.3%) Aspirin 3, 460 (50.6%) Control 3 377 (49.4%)

TACS 1,546 (24.7%) 1,539 (24.3%) 781 (22.6%) 772 (22.8%)

LACS 1,428 (22.8%) 1,474 (23.3%) 898 (26.0%) 857 (25.4%)

POCS 733 (11.7%) 735 (11.6%) 388 (11.2%) 372 (11.0%)

Other 15 (0.2%) 22 (0.3%) 11 (0.3%) 9 (0.3%)

Region

Europe 5,243 (83.8%) 5,309 (83.8%) 2,876 (86.0%) 2,804 (86.0%)

North America 96 (1.5%) 94 (1.5%) 28 (0.8%) 30 (0.9%)

South America 205 (3.3%) 213 (3.4%) 142 (4.3%) 133 (4.1%)

Africa 33 (0.5%) 32 (0.5%) 2 (0.1%) 2 (0.1%)

Middle East 107 (1.7%) 107 (1.7%) 93 (2.8%) 93 (2.8%)

North Asia 44 (0.7%) 45 (0.7%) 18 (0.5%) 17 (0.5%)

South Asia 112 (1.8%) 117 (1.8%) 81 (2.4%) 79 (2.4%)

Oceania 420 (6.7%) 421 (6.6%) 105 (3.1) 104 (3.2%)

Death/dependency at 6 mo 3,896 (62.2%) 4,027 (63.5%) 2,104 (60.8%) 2,098 (62.1%)

Missing value 43 (0.7%) 42 (0.07%) 38 (1.1%) 27 (0.8%)

Medians (interquartile ranges) and counts (proportions) are reported for continuous and binary or categorical variables, respectively.
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of death/dependency by more than 20%), but harmful for
others (increasing the risk by 20% or more). Following
the suggestion of an anonymous reviewer, we reported
the calibration and discrimination performance of these
predicted ITEs in Appendix.

We then stratified the trial with regard to the predicted
ITE (i.e., stratum with expected benefit, dITE! 0; stratum
without expected benefit, dITE � 0). These two strata repre-
sented 74.0% and 26.0% of the overall trial, respectively. In
the beneficial stratum, the average aspirin effect was more
than two-fold greater than the one originally reported in the
trial with, in the derivation sample, an absolute risk differ-
ence equal to �3.4% (95% CI: �5.5% to �1.4%,
P ! 0.001; number needed to treat: 29 patients), which
was confirmed in the validation sample: �3.3% (95% CI:
�6.1% to �0.4%, P 5 0.025; number needed to treat: 30
patients). In the stratum without expected benefit, the
average effect of aspirin was equal to þ3.3% (95% CI:
0.3% to 6.3%, P 5 0.031; number needed to harm: 30 pa-
tients) in the derivation sample and to þ1.6% (95% CI:
�2.9 to þ6.1, P 5 0.49; number needed to harm: 63 pa-
tients) in the validation sample.
4. Discussion

We have illustrated how the methodology of clinical pre-
diction models may be used under a counterfactual frame-
work to predict individualized treatment responses. By
reanalyzing the IST, we show that using counterfactual risk
prediction models may help clinicians determine which pa-
tients with suspected ischemic stroke may benefit from
aspirin.
The fairly good predictive performances of the two pre-
diction models suggest consistent predictions that allow
ITEs to be estimated. Our analyses in the derivation sample
concur with those conducted in the validation sample, in
finding that aspirin had a heterogeneous effect across the
population, with a benefit in three-quarters of patients. This
finding raises a concern of the na€ıve analysis of RCTs: If a
significant average effect (as previously demonstrated for
aspirin) shows a glass half full, an analysis of individual-
ized effects can show it half empty. Meta-analyses have es-
tablished a benefit of aspirin on average [40,41], yet a
quarter of patients may instead experience harmful effects
under aspirin.

Although the concept of evidence-based medicine has
been widely implemented in clinical practice, evidence ob-
tained from RCTs is stated at the population level, while
clinical decisions are often made at the patient level [4,5].
This contrast warrants the need for methods to estimate
treatment effects at individualized and subpopulation levels
[6,7]. In traditional subgroup analysis, a population is sub-
divided on one variable at a time according to what re-
searchers and clinicians consider to be potentially
modifying treatment effects; thereby limiting how many
characteristics can simultaneously explain heterogeneity
in therapeutic response [8,9]. Recent approaches propose
stratifying populations using disease risk scores
[10,11,42e44], that is, prediction models without treatment
(i.e., models that return bPðYð0Þ 5 1jXÞ). In contrast to one-
variable-at-a-time analyses, these methods rely on multivar-
iable models, which enable to create subpopulations that
differ by many covariates (‘‘multivariable’’ subgroup anal-
ysis). Nonetheless, the way thresholds are defined to create
such strata may be arbitrary, particularly in cases of



Table 2. Models with and without aspirin predicting death or dependency at 6 months

Variable

With aspirin Without aspirin

Odds ratio (95% CI) P Odds ratio (95% CI) P

Intercept 0.08 (0.03e0.20) 0.12 (0.05e0.32)

Age (y) 1.03 (1.02e1.04) !0.001 1.03 (1.02e1.04) !0.001

(Age)’ 1.03 (1.01e1.04) 1.03 (1.01e1.04)

Delay (h) 1.00 (1.00e1.01) 0.061 1.00 (1.00e1.01) 0.001

Systolic blood pressure (mmHg) 1.00 (0.99e1.00) 0.001 1.00 (0.99e1.00) 0.003

(Systolic blood pressure)’ 1.00 (0.99e1.01) 1.00 (1.00e1.01)

Male sex 0.76 (0.67e0.86) !0.001 0.79 (0.70e0.90) !0.001

Computerized tomography (CT) 0.55 (0.47e0.64) !0.001 0.55 (0.47e0.64) !0.001

Infarct visible at CT 1.47 (1.26e1.73) !0.001 1.51 (1.30e1.76) !0.001

Atrial fibrillation 1.19 (0.99e1.43) 0.046 1.28 (1.06e1.54) 0.005

Aspirin within previous 3 d 1.20 (1.03e1.40) 0.094 1.28 (1.10e1.48) 0.005

Face deficit (reference: No) !0.001 !0.001

Not assessable 1.13 (0.55e2.32) 0.87 (0.43e1.78)

Yes 1.24 (1.07e1.44) 1.18 (1.02e1.36)

Arm/hand deficit (reference: No) !0.001 !0.001

Not assessable 0.57 (0.20e1.58) 1.03 (0.32e3.32)

Yes 1.42 (1.13e1.79) 1.41 (1.12e1.76)

Leg/foot deficit (reference: No) !0.001 !0.001

Not assessable 1.93 (0.96e3.86) 2.10 (0.89e4.98)

Yes 2.21 (1.84e2.64) 1.97 (1.65e2.35)

Dysphasia (reference: No) 0.002 0.397

Not assessable 2.36 (1.12e4.97) 1.18 (0.72e1.94)

Yes 1.14 (0.96e1.35) 1.20 (1.02e1.43)

Hemianopia (reference: No) !0.001 !0.001

Not assessable 1.53 (1.16e2.01) 1.41 (1.08e1.85)

Yes 1.70 (1.30e2.22) 1.66 (1.27e2.15)

Visuospatial disorder (reference: No) !0.001 !0.001

Not assessable 1.57 (1.22e2.03) 1.69 (1.31e2.18)

Yes 1.59 (1.28e1.99) 1.79 (1.44e2.23)

Brainstem/cerebellar signs (reference:
No)

0.019 0.414

Not assessable 1.20 (0.85e1.69) 1.10 (0.80e1.50)

Yes 2.87 (0.89e9.26) 1.98 (0.78e5.07)

Other deficit (reference: No) 0.001 0.233

Not assessable 1.57 (1.05e2.34) 0.75 (0.53e1.06)

Yes 1.60 (1.21e2.13) 1.07 (0.82e1.40)

Consciousness (reference: Fully alert) !0.001 !0.001

Drowsy 2.84 (2.31e3.49) 2.73 (2.22e3.36)

Unconscious 8.98 (2.05e39.39) 11.57 (3.38e39.67)

Stroke type (reference: PACS) !0.001 !0.001

TACS 1.14 (0.86e1.50) 1.08 (0.82e1.42)

LACS 0.93 (0.76e1.14) 0.88 (0.72e1.08)

POCS 0.32 (0.10e1.03) 0.45 (0.18e1.13)

Other 0.81 (0.21e3.20) 0.92 (0.33e2.57)

Region (reference: Europe) !0.001 !0.001

North America 0.38 (0.23e0.65) 0.81 (0.49e1.32)

South America 0.52 (0.37e0.72) 0.62 (0.45e0.85)

Africa 0.27 (0.11e0.67) 0.46 (0.20e1.08)

(Continued )
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Table 2. Continued

Variable

With aspirin Without aspirin

Odds ratio (95% CI) P Odds ratio (95% CI) P

Middle East 0.83 (0.52e1.34) 0.70 (0.44e1.10)

North Asia 0.50 (0.24e1.06) 0.53 (0.26e1.07)

South Asia 0.93 (0.59e1.47) 0.65 (0.42e1.02)

Oceania 0.66 (0.51e0.84) 0.58 (0.46e0.74)

A restricted cubic spline with three knots was used to describe the effects of age (knots at 56, 74 and 85 years) and systolic blood pressure
(knots at 130, 160 and 200 mmHg).

Abbreviations: PACS, partial anterior circulation syndrome; TACS, total anterior circulation syndrome; LACS, lacunar syndrome; POCS, poste-
rior circulation syndrome
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nonmonotonic relationships between the prognosis without
treatment and the treatment effect itself. In this regard, we
highlight a practical issue of disease riskestratified anal-
ysis: because the analyst might be unable to properly define
thresholds, they may be inclined to repeatedly create strata
and conduct statistical analyses until finding results that
satisfy their hypothesis (i.e., multiple analyses increase
the risk of false-positive findings). Using counterfactual
prediction models, there is no need to define thresholds:
the ITE is directly inferred from comparing the counterfac-
tual risks of outcome (i.e., bPðYð1Þ 51jXÞ and bPðYð0Þ 5
1jXÞ). As treatment effects are estimated at individualized
levels (these estimates can then be averaged at the (sub)
population level), this refers to a ‘‘bottom-up’’ approach
as opposed to previous methods estimating effects from
the population to the patient (‘‘top-down’’).

Counterfactual prediction modeling may address issues
faced by existing approaches. Those seeking to assess het-
erogeneity are often limited by the unobserved distribution
of the ITEs [45,46], while existing methods for predicting
Fig. 1. Calibration curves of the counterfactual prediction models within each
ideal calibration. (For interpretation of the references to color in this figure
ITEs do not consider heterogeneity at all [47,48]. For
example, Dorresteijn et al. suggest calculating the ITE by
assuming a homogenous treatment effect and multiplying
the pretreatment risk of outcome (obtained from an existing
model) by the average treatment effect [47]. Other ap-
proaches, such as that proposed in the study by van Kruijs-
dijk et al. [49], or Yeh et al. [50], require appropriate
interaction terms to be included in a modeling step to
handle treatment effect heterogeneity [10,11]. However,
precedents have shown that modeling strategies that omit
interactions may result in misleading estimates of ITE
[51,52]. Counterfactual prediction modeling uses a
different paradigm: where testing interactions can only sug-
gest statistically significant differences in effects between
subpopulations, estimating separate models allow differ-
ences that are informative at the individual level to be
captured. In fact, this corresponds to a model including
all (two-way) interactions possible with the treatment vari-
able. This flexible approach can still be completed by
including additional high-order interactions. The use of
treatment group of the validation sample. The red dotted lines refer to
legend, the reader is referred to the Web version of this article.)



Fig. 2. Distribution of the individualized effect of aspirin (absolute risk difference). Negative values correspond to an outcome risk reduction under
aspirin (beneficial effect), whereas positive values denote an increase of risk under aspirin (harmful effect).
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separate counterfactual models complies with recent pro-
posed approaches for identifying and targeting beneficial
subpopulations [20e27]. Because counterfactual prediction
modeling allows a causal interpretation of ITE based on
prediction models, it may combine advantages and solve
concerns of the disease risk model approach and the
effect-interaction model approachdboth described in a
recent statement on predictive approaches to treatment ef-
fect heterogeneity [10,11].

Diverse limitations have to be considered to counterfactual
prediction models. This methodology should not be applied
without precaution. As with any clinical prediction model,
three key steps should be undertaken: model development,
external validation, and impact analysis [53], with models be-
ing transparently reported as stated for diagnostic and prog-
nostic research [33,39]. In addition to assessing the
predictive performances of the counterfactual prediction
models, further methods are needed for calibrating the esti-
mated ITEs. Ideally, counterfactual prediction models
approach should be applied to identify responders in RCTs
which have demonstrated a significant benefit; failing that,
they may be useful to refine inclusion criteria for secondary
trials. Appropriate confirmatory studies must nonetheless be
conducted to prove the benefits revealed by such a reanalysis.
Optimally, with regard to our reanalysis of the IST, further
studies on external trials should be conducted to confirm our
results; we intended to provide an illustrative example rather
than results ready to be applied in clinical practice. From an
analytic perspective, counterfactual prediction models com-
bines two regression models (or more, in the case of multiple
treatment arms), which might require more meticulous prac-
tices than usual. Further studies are needed to explore the
robustness of this approach against model misspecification.
The applicability of this method for reanalyzing RCTs may
be limited by the need for large RCTs because samples
including sufficient outcomes within each treatment arm are
required to avoid overfitting [34]. Our illustration takes advan-
tage of the considerable sample size of the IST, whichmay not
be found in most RCTs. In the (likely) case of smaller trials,
penalization of regression models might be required [37].
Finally, it is worth noting that the ‘‘individualized treatment
effect’’, which is defined on a limited set of covariates, is to
be distinguished from the individuald‘‘indivisible’’,
etymologicallydtreatment effect, which is nonidentifiable
[10,11]. In this sense, our approach is to be understood as a
support for clinical decision-making based on evidence in-
ferred in (fine) groups of patients sharing similar characteris-
tics. Epistemic uncertainty is therefore to be acknowledged in
this decision-making: uncertainty about the evidence drawn
from the groups, and uncertainty due to the gap between
groups and individuals.

In conclusion, we have illustrated how using the meth-
odology of clinical prediction models under a counterfac-
tual framework may potentially help infer individualized
therapeutic responses.
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