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ABSTRACT: Many randomized clinical trials schedule subjects to undergo some assessment at
a fixed time (or times) after the initiation of treatment. Often, these follow-up measure-
ments may be missing for some subjects because a disease-related event occurred prior
to the time of the follow-up observation. For example, a study of congestive heart failure
may schedule patients to undergo exercise testing at 12 weeks, but this measurement
may be missing for those who died of heart disease during the study. In such cases,
the measurements are informatively missing because mortality from heart disease and
a decline in exercise both indicate progression of the underlying disease. It is inappropri-
ate, therefore, to treat these missing observations as missing-at-random and ignore them
in the analysis.

In one approach to this problem, investigators have included such patients in the
analysis of the follow-up data by assigning a rank that represents a “worst-rank score”
relative to those actually observed. Some, however, have criticized this procedure as
having the potential to produce biased results. In this paper, we explore the statistical
properties of such an analysis. We show under a specific model that the imputation of
a worst-rank score for informatively missing observations provides an unbiased test
against a restricted alternative. We also describe generalizations that employ the actual
times of the informative event. We present an example from a study of congestive heart
failure. Last, we discuss the implications of this approach and of other methods. Control
Clin Trials 1999;20:408–422  Elsevier Science Inc. 1999
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INTRODUCTION

The classic design of randomized clinical trials and other randomized experi-
ments entails the observation of two or more groups of subjects for a period
of time after assigned treatments are applied. Commonly, however, some of
the randomized subjects may experience disease-related terminal events during
the study that prevent their physical evaluation at the end of the study, so that
some observations may be informatively missing. For example, consider the
clinical trial of the effects of vesnarinone (v) versus placebo (p) on the disease
status of patients with congestive heart failure, as reflected by measures of
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exercise time after 12 weeks of treatment [1]. Exercise time declines as the
status of the patients deteriorates and concurrently the risk of heart-related
death increases. Of the 80 patients randomized (40 each to p and to v), six died
before the 12-week examination: five in p and one in v. Clearly, the exercise
time measures of these patients are missing after the day of death.

When posttreatment observations are missing completely at random, then
the analysis of the observed (nonmissing) data is unbiased [2–4]. This implies
that the subset of measurements actually observed provides an unbiased de-
scription of the drug treatment’s effect in the entire population. In this case,
“missingness” is noninformative about the disease status of a patient in that
it does not imply that a patient’s health status is any better or worse than that
of patients with complete observations.

On the other hand, we say that missing observations are informatively
missing when there is some association between whether or not an observation
is missing (or observed) and the status of the patient’s underlying disease. In
this case, an analysis based only on the subset of measurements actually ob-
served may provide a biased description of the treatment effect.

In the analysis of the vesnarinone trial, therefore, the issue is whether mea-
sures of exercise time that are missing after death from heart failure should
be considered missing-at-random or informatively missing. Clearly, they are
the latter, because mortality owing to heart disease is the ultimate indication
that the patient’s health has deteriorated. Therefore, the effect of the drug on
the course of congestive heart failure can manifest itself either in an effect on
survival, or in an effect on the survivors’ exercise tolerance, or both. Similar
considerations apply to the measure of quality of life that was also a primary
outcome in the vesnarinone trial.

In such cases, investigators have sometimes used “worst-rank scores” in
univariate (marginal) rank analyses of posttreatment measurements in order
to account for prior informative events (see [5]). Each observation that is infor-
matively missing receives a rank score corresponding to a value of the measure-
ment that is worse than any actually observed. In the analysis of the 12-week
exercise times in the example above, patients who had previously died would
be assigned an exercise time of zero (or less) and a rank analysis then applied
to the data. Herein we term this a tied worst-rank score analysis.

Two clinical trials of vesnarinone versus placebo in congestive heart failure
employed this method in the analysis of exercise time, quality of life, and other
measures [1,6]. Regarding the analyses of quality of life, an accompanying
editorial stated that “. . . although the investigators reported that the drug
improved quality of life, the analysis they used assigned the worst quality of
life to the patients who died. Such an approach inevitably leads to the conclusion
that the patients who live longer feel better—which is not necessarily true” [7].
The implication is that such worst-rank score analyses are inherently biased.

In this paper, we aim to explore the statistical properties of worst-rank score
analyses. In the following section, we present a statistical model showing that
this approach is unbiased against a restricted alternative that the treatment has
a favorable (or unfavorable) effect on both the observable measures (exercise
time) and the informative outcome event that leads to informatively missing
data (death). Then we present a generalization that employs untied worst-rank
scores based on the day of death. We offer as an example the analysis of exercise
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times in the vesnarinone trial. We review the implications of the assumed
model and contrast this method with other possible approaches to the analysis
of such data.

TIED WORST-RANK SCORE ANALYSIS

We consider the simplest case of two groups of subjects (i 5 1,2) who will
be assessed with a single posttreatment repeated measurement X after some
fixed time T (e.g., a 12-week assessment of exercise time among patients with
congestive heart failure). The trial aims to determine whether the experimental
treatment group (say, i 5 2) fares better than the control (i 5 1). To simplify
the presentation, we consider at this stage only the one-sided test directed
toward detecting a beneficial effect of treatment; later we consider a two-sided
generalization. We denote the measurements for the jth subject in the ith group
at time T as xij, where this posttreatment measurement may be missing for
some subjects. Then an analysis based on all of the observed data is unbiased
when observations are missing by reason of chance, that is, they are missing
completely at random. The issue is how to perform an unbiased analysis of
the data when some observations are informatively missing because an ab-
sorbing, or terminal, event has occurred related to the progression of the disease.

Consider the following particular type on nonrandom or informatively miss-
ing mechanism. Assume, without loss of generality, that the observation of a
lower value of xij reflects a worsening of the underlying disease. Also assume
that each subject may experience an informative event (e.g., mortality) that
reflects terminal progression of the disease. Yet, observation of the event pre-
cludes observation of X if the event occurs prior to T. Let tij refer to the event
time for the ijth subject, where these event times are right-censored at T if the
subject completes the study. Then, the measurement xij at time T is missing for
those subjects for whom tij < T. Clearly, such measurements are informatively
missing. To account for these informatively missing observations, we must
include in the analysis both the observed (nonmissing) values of X and the
informative events. In cases where lower values of X denote worse disease, all
values of X will usually be no less than some constant j. Then, in a rank
analysis, the worst rank score for a patient who has died is the rank score of
the value j, or of some constant h , j if we wish to distinguish a prior event
from a surviving subject with an observed value equal to j. In either case, all
prior informative events (e.g., deaths) then share the same tied worst-rank score.

For the example, exercise times are non-negative and x > j (5 0). If a patient
has previously died due to heart failure, we could assign a value of zero to
the subsequent missing exercise time at 12 weeks. Alternately, to distinguish
prior mortality from a surviving patient who cannot exercise at all, we could
assign any negative constant desired (e.g., h 5 29999). In either case, we should
then perform a rank analysis rather than a parametric analysis. A parametric
analysis would be inappropriate because the numerical values so imputed have
no natural meaning, and because such a single value imputation distorts the
estimated variances. A rank analysis, however, considers only the relative
ordering of the values, and the variance of the test with an adjustment for ties
is still appropriate.
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We now show that such a rank analysis is unbiased with respect to a particu-
lar null hypothesis and a restricted alternative hypothesis. Let Gi(x) refer to
the cumulative probability distribution of the observable values of X for all
event-free members of the ith group observed at time T; that is, Gi(x) 5 P(xij <
x|t . T). Also, let Ki(t) refer to the cumulative distribution of informative event
times in the ith group. We wish to test the null hypothesis that the treatment
groups do not differ with respect to the event times and the distributions of
the observable measurements. We need to consider both components because
the two distributions are related. Therefore, we wish to test the joint null hy-
pothesis

H0: G1(x) 5 G2(x) and K1(t) 5 K2(t) (0 , t < T). (1)

The one-directional alternative hypothesis of interest is that the experimental
group fares “better” with regards to the observable values of X and the incidence
of the informative event. To allow for a favorable effect on one measure and
no effect on the other, the precise alternative hypothesis of interest is that the
experimental group does not fare worse for either measure. We use the notation
G1 ≺ G2 to mean that G1(x) is shifted to the left of G2(x), or that the observable
values in group 1 (control) tend to be less than those of group 2 (experimental),
or that there is a difference in favor of the experimental group since higher
values of X are better. Conversely, we use G1 ê G2 to indicate that either G1 ≺
G2 or G1 5 G2; that is, the values in group 2 are not shifted to the left of, or
worse than, those of group 1. For exercise time and survival time, where higher
values are better, the alternative of interest is that the experimental group 2
tends to have higher values of x and/or t while not having lower values for
either. This hypothesis is expressed formally as

H1: (G1 ≺ G2 and K1 ≺ K2)
or (G1 ≺ G2 and K1 5 K2)
or (G1 5 G2 and K1 ≺ K2) (2)

or as

H1: (G1 ≺ G2 and K1 ê K2)
or (G1 ê G2 and K1 ≺ K2) (3)

Note that the alternative hypothesis (2) is a restricted, or ordered, alternative
that is a subset of the omnibus (union/intersection) general alternative hypothe-
sis of any difference in any direction for either measure (G1 ≠ G2 and/or K1 ≠
K2). This omnibus alternative includes cases other than those in (2), such as
where the experimental group has a more favorable outcome for exercise time
but a less favorable outcome for survival. Such conflicting results, however,
would not indicate an overall beneficial effect of treatment and thus are of no
interest. Therefore, we restrict consideration to the properties of a test of (1)
versus (2) only.

In the appendix, we show that the worst-rank score test provides an unbiased
test of the joint null hypothesis H0 in (1) against an ordered alternative H1 of
the form (2) under the informative censoring model where informative censor-
ing (tij , T) implies a worst value for X (x 5 h < j). Under H0, the treatment
groups show no difference in the progression of the studied disease so that
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there is no difference in the distributions of the informative censoring event
or in the distributions of the observable measures. Thus, no bias is introduced
when a worst rank is assigned to the informatively missing observations that
will occur by chance in both groups. In this case, the expected value of a rank
test is zero and the test will have the desired type I error probability level a.
Yet, if there is a difference in the postulated direction under the alternative H1

for both the censoring event and the observable measure, then the expected
value of a rank test is greater than zero and the power of the test is greater
than the type I error probability a. Note that the postulated direction under
the alternative is that one or both outcomes X or t differs in a favorable direction,
and that neither outcome is different in the opposite direction. We consider a
test with these properties an unbiased test of the null hypothesis H0 against
the particular alternative H1 [8].

In some cases, lower values of X are better and higher values worse. The
corresponding model then states that informative censoring (tij , T) implies a
worst high value for X (x 5 h > j). This case would impute a high value for
the outcome of interest (h 5 9999), which is greater than the highest observed
value. The alternative hypothesis of interest in this case is

H1: (G1 Â G2 and K1 ê K2)
or (G1 Î G2 and K1 ≺ K2) (4)

where G1 Â G2 means that G1(x) is shifted to the right of G2(x). The worst-rank
analysis again would provide an unbiased test of H0 versus this alternative.

UNTIED WORST-RANK SCORE ANALYSIS

One generalization of this approach is to consider the actual times of the
informative event, for example, the time of death in a study of congestive heart
failure. When lower values of X are worse (as for exercise time), let h be a
constant such that (h 1 T) , j, because the largest informative event time must
be no greater than T (the time of the follow-up measurement). A subject who
has experienced the informative event is then assigned a “value” of h 1 tij such
that the informatively missing observations receive the lowest ranks, and these
ranks reflect the relative ordering of the event times. In the previous model,
all informatively missing observations shared the same tied rank value. Here
these tied ranks are broken on the basis of actual event times. In the appendix
we also show that a rank analysis based on these data provides an unbiased
test of (1) against (2).

When higher values of X are worse, let h be a constant such that (h 2 T) .
j. A subject who is informatively censored is then assigned a “value” of h 2
tij. Subjects who are informatively censored early thus have higher rank scores
than those informatively censored late.

AN ILLUSTRATION: VESNARINONE IN THE TREATMENT OF CONGESTIVE
HEART FAILURE

Feldman, et al. describe a randomized clinical trial of vesnarinone in the
treatment of congestive heart failure [1]. The study randomized a total of 80
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patients to receive either vesnarinone or placebo within each of two clinical
centers (40 patients each) and stratified them by whether they were also taking
digoxin. Investigators scheduled follow-up assessments of exercise tolerance
(total exercise time) and other measures to occur after 4, 8, and 12 weeks of
treatment. Prior to the final 12-week evaluation, however, a total of six patients
died from worsening heart disease: five in the placebo group, and one in the
vesnarinone group. Observations were missing for an additional two patients
(both placebo-treated) who had reached an endpoint of nonfatal worsening
heart failure, defined in part by inability to tolerate any exercise. We show in
Table 1 the exercise times observed at baseline and during treatment, along
with the day of death or withdrawal for worsening heart failure. Observations
that were missing because of an informative event are designated with “****”.
Observations that were missing for other reasons are designated with “.”. Such
observations arose either from loss to follow-up or heart transplant, the latter
being a random event dictated by the chance of “finding a match.” We treated
these as missing completely at random; that is, we ignored them in the marginal
analysis of the observations at that time but included them in the analysis at
other times when they were measured.

To allow for a set of repeated measures, Wei and Lachin [9] and Thall and
Lachin [10] have described a multivariate rank analysis for partially incomplete
observations wherein observations on some subjects are missing completely at
random (see also [11, 12]). These methods provide multivariate generalizations
of common univariate rank techniques.

A multivariate Mann-Whitney Wilcoxon analysis of the data from the vesnar-
inone study data was performed at each week (4, 8, and 12) and for all weeks
combined. The differences between groups were expressed as a Mann-Whitney
difference, which is computed as P̂(v > p) 2 P̂(p > v), where P̂(v > p) is the
estimated probability that the value from a randomly selected vesnarinone-
treated patient is at least as high as that of a randomly selected placebo-
treated patient. The difference between vesnarinone and placebo for all weeks
combined was assessed by the 1 degree of freedom (df) test of association
[10,11]. This overall summary test is based on an efficient combination of the
Mann-Whitney differences at weeks 4, 8, and 12 (Lachin [11], Eq. 13–16), with
covariances of the rank statistics estimated by the method of Wei and Lachin
[9]. Analyses used a worst-rank score imputation, as well as the “untied” rank
scores. We summarize the results in Table 2.

Table 2.A presents the multivariate rank analysis with no adjustments for
informatively missing observations wherein all missing observations are simply
ignored, including those due to prior mortality. Thus, it considers all missing
observations to be missing completely at random, which is clearly not the case.
This analysis tests H: G1 5 G2 against the alternative that G1 ≠ G2 among the
observed values for patients whose condition did not deteriorate to the point
of worsening heart failure or death. This analysis shows a trend toward higher
exercise times among event-free vesnarinone-treated patients, as indicated by
the positive Mann-Whitney differences at each week and combined. This analy-
sis, however, ignores the fact that those informatively missing were by defini-
tion unable to exercise.

Table 2.B presents the analysis using worst-rank score imputation. Observa-
tions informatively missing at each week received a worst-rank score in these
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Table 1 Total Exercise Time at Baseline, 4, 8, and 12 Weeks of Treatment
with Either Placebo (P) or Vesnarinone (V)*

Informatively
Study Week Missing

Group 0 4 8 12 Day Reason

P 9.53 5.77 **** **** 29 Morbidity
P 6.15 2.00 **** **** 40 Mortality
P 14.67 13.05 15.02 15.05
P 9.07 11.20 10.93 11.63
P 9.88 9.83 9.78 12.00
P 11.98 11.85 11.32 11.28
P 11.35 10.85 12.22 12.17
P 4.10 3.23 3.62 1.40
P 10.27 11.35 10.43 10.95
P 11.50 10.52 12.00 12.27
P 11.33 11.10 10.37 10.87
P 10.33 **** **** **** 13 Mortality
P 6.83 10.50 10.45 11.18
P 13.07 12.95 13.33 12.88
P 3.45 . . .
P 12.45 12.72 12.92 12.47
P 9.97 8.32 6.10 10.07
P 6.75 8.10 9.50 9.33
P 13.33 13.27 13.25 14.18
P 13.83 14.82 14.50 14.80
P 13.28 15.27 **** **** 53 Mortality
P 12.40 12.10 11.78 11.43
P 13.00 13.05 12.53 12.35
P 14.55 6.45 9.50 9.37
P 15.78 16.10 17.37 14.85
P 13.85 14.88 13.62 11.48
P 15.10 15.75 14.58 14.85
P 8.00 7.12 6.35 2.38
P 8.18 ****† **** **** 24 Morbidity
P 2.15 2.43 2.52 2.80
P 12.72 9.48 11.65 8.45
P 19.02 18.93 15.60 17.20
P 9.47 **** **** **** 19 Mortality
P 11.72 12.33 14.62 15.93
P 8.23 9.35 **** **** 56 Mortality
P 13.55 12.58 . .
P 6.95 9.28 4.12 8.85
P 13.72 10.13 11.23 12.80
P 9.40 9.40 9.28 9.33
P 8.30 9.50 10.53 9.75
V 11.83 12.98 13.82 12.70
V 11.88 10.55 13.10 12.03
V 12.03 12.10 11.63 12.22
V 11.88 11.53 11.45 10.82
V 13.65 13.90 13.47 13.30
V 9.85 9.58 **** **** 35 Mortality
V 7.77 7.43 8.05 9.28
V 13.12 12.50 13.50 13.73
V 9.83 9.83 9.55 10.05
V 10.07 10.23 12.57 12.32
V 10.07 . 9.65 .

(continued)
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Table 1 (Continued)
Informatively

Study Week Missing

Group 0 4 8 12 Day Reason

V 11.03 9.45 9.65 10.23
V 11.80 12.40 12.42 12.20
V 11.43 11.67 12.58 12.77
V 11.28 12.13 11.13 10.92
V 10.50 11.27 9.37 12.78
V 10.67 11.10 11.47 13.30
V 18.13 20.48 17.40 20.28
V 15.77 15.95 15.63 14.98
V 12.20 14.60 14.47 13.20
V 12.10 7.43 11.25 10.95
V 9.62 14.25 11.75 11.02
V 19.85 18.97 19.30 21.68
V 13.35 14.93 15.37 15.07
V 11.63 13.37 9.70 9.45
V 2.73 3.02 2.65 3.43
V 9.80 11.92 10.67 10.65
V 10.72 10.75 10.47 10.62
V 10.85 8.60 10.82 9.77
V 13.30 14.48 14.43 15.07
V 8.57 8.37 9.15 8.03
V 19.02 12.02 12.43 15.58
V 12.87 12.90 13.20 13.00
V 10.77 . 12.35 11.40
V 3.88 5.12 5.48 7.28
V 4.38 4.10 4.85 5.02
V 7.52 7.90 9.62 7.35
V 10.62 12.35 9.48 .
V 4.32 6.23 4.93 5.00
V 9.15 8.52 6.95 7.23

* We designate values missing because of an informative event by “****” and those missing at
random by “.”, and we note the time and reason for informatively missing observations.
† The analyses presented in [1] treated this observation as missing at random because the visit at
week 4 was actually conducted. No attempt, however, was made to conduct the exercise test since
the patient’s condition was poor.

analyses using h 5 29999. At week 2 there were two such observations (both
placebo), which shared the tied worst rank of 1.5. At 8 and 12 weeks, the eight
such observations (seven placebo) shared the worst rank of 4.5. This analysis
shows substantially larger differences between groups, reflecting the favorable
increase in exercise times and reduction in morbidity and mortality with vesnar-
inone treatment.

Table 2.C presents the like analysis with untied worst-rank scores, using the
actual survival times. These results are nearly identical to those in Table 2.B,
but the magnitude of the group differences is slightly less. This is because the
vesnarinone-treated death at 35 days receives a rank score of 4.5 at weeks 8
and 12 in Table 2.B, versus a rank score of 5 in Table 2.C.

Note that the analyses presented in Table 2 differ from those presented in
Feldman, et al. [1] in that the latter employed an analysis that was stratified
by both clinic and digoxin use [11].
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Table 2 Mann-Whitney Analyses of Placebo (P) Versus Vesnarinone (V) Groups*
4 Weeks 8 Weeks 12 Weeks Combined

P V P V P V Association

A. No imputed values
(missing at random)

Sample size 36 38 31 39 31 37
Quartiles

75% 1.01 1.18 0.67 1.15 0.97 1.40
50% 20.06 0.21 20.10 0.28 0.02 0.61
25% 20.93 20.34 20.96 20.43 20.93 20.36

P (v > p) 0.575 0.566 0.566
P (v > p) 0.426 0.437 0.436
Mann-Whitney difference 0.149 0.129 0.130 0.138
S.E. 0.133 0.139 0.140 0.114
Z 1.12 0.93 0.93 1.22
Covariances 0.0177 0.0085 0.0101

0.0192 0.0124
0.0196

B. Worst rank-score
imputation

Sample size 39 38 38 40 38 38
Quartiles

75% 0.99 1.18 0.47 1.14 0.82 1.40
50% 20.09 0.21 20.48 0.13 20.36 0.51
25% 21.62 20.34 23.42 20.49 24.27 20.54

P (v > p) 0.608 0.634 0.634
P (p > v) 0.393 0.372 0.373
Mann-Whitney difference 0.215 0.262 0.261 0.242
S.E. 0.130 0.129 0.130 0.110
Z 1.65 2.03 2.00 2.19
Covariances 0.0168 0.0083 0.0094

0.0167 0.0124
0.0170

C. Untied worse
rank-scores

Sample size 39 38 38 40 38 38
Quartiles

75% 0.99 1.18 0.47 1.14 0.82 1.40
50% 20.08 0.21 20.48 0.13 20.36 0.51
25% 21.62 20.34 23.42 20.49 24.27 20.54

P (v > p) 0.608 0.632 0.632
P (p > v) 0.393 0.370 0.370
Mann-Whitney difference 0.215 0.263 0.262 0.241
S.E. 0.130 0.131 0.132 0.112
Z 1.65 2.00 1.98 2.15
Covariances 0.0177 0.0085 0.0101

0.0192 0.0124
0.0196

S.E., standard error.
* Analysis of change in exercise time after 4, 8, and 12 weeks of treatment, and combined over treatment
using the minimum variance linear estimator of overall association [11].
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DISCUSSION

The Informatively Missing Model

In a simple naive analysis we might assess the magnitude of the difference
between groups when the prior informatively missing observations (say,
deaths) are treated as missing at random and ignored. In this example (Table
2.A), the analysis assesses the difference in exercise times (the measured out-
come) only among “survivors,” which is equivalent to treating the informatively
missing observations as “missing at random.” The analysis thus assumes that
all of the information about the effect of the treatment on the disease status in
the population of patients with congestive heart failure is captured by the
measurements of exercise times among survivors. Further, the missing-at-ran-
dom assumption implies that this analysis of exercise times reflects that of
all patients in the eligible population, including those who died, which is
clearly unrealistic.

This simplistic “survivors-only” analysis provides a test of the null hypothe-
sis G1 5 G2 against the alternative that G1 ≠ G2 where Gi is the distribution of
the observable values in the ith group. Under the joint null hypothesis in (1) of
no treatment effect on disease progression, a test of this univariate hypothesis
will also be unbiased in that the type I error probability is still the desired a
and the power is greater than a when there is a treatment effect under the
alternative in (2) or (4). This analysis, however, will have less power than a
worst-rank analysis when there is a favorable treatment effect on both the
observed measures and the informative event times. Thus, if the analysis aims
to assess the effect of treatment on the overall progression of the disease,
manifest either by death or by decline in exercise times, then we should seek
an analysis that incorporates the information from both outcomes, such as the
worst-rank score analysis.

In addition, a “survivors-only” analysis does not provide a prospective
assessment of the treatment effect among all patients randomized and thus
does not satisfy the requirements of an intention-to-treat analysis that addresses
the question of the treatment effect among those eligible for treatment. Con-
versely, a worst-rank score analysis reflects the fact that one is studying a
spectrum of disease progression that culminates in a terminal event (e.g., death)
that precludes future observation. Although some have criticized this analysis
as possibly biased, we show it herein as, in fact, unbiased when the informa-
tively missing event and the outcome measure are indisputably linked as
manifestations of the underlying disease under study.

We base the demonstration of unbiasedness on a test of the joint bivariate
null hypothesis H0 against the joint alternative H1 in (2), which specifies that
group 2 fares “better” for either the observed measures or the incidence of the
event, or both, and does not fare worse for either. This test, however, is not
designed to assess whether the groups differ in any direction for either or both
of these variables. For such alternatives where one group is better for one
variable but worse for the other, a test using worst-rank scores will be inefficient,
that is, it will have low power to detect such group differences. A therapy with
such contrary treatment effects is, however, of little interest.

Some have criticized this approach for its use of a restricted alternative
hypothesis, yet many statistical tests in common use are directed toward such an
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ordered restricted alternative. One is the Wei-Lachin test of stochastic ordering,
another the test of association as employed in the example herein. Elsewhere
we have contrasted the null and alternative hypotheses and the rejection regions
for these tests with those of the omnibus test [12]. Perhaps the most common
instance of such a test is the Mantel-Haenszel test for multiple 2 3 2 tables
from independent strata. Consider the case of two strata with respective log
odds ratios u1 and u2, where u1 is analogous to the group difference with respect
to the observable measures, and u2 is analogous to the difference with respect
to the informative event. In the Mantel-Haenszel analysis, we wish to test the null
hypothesis H0: u1 5 u2 5 0 against the restricted alternative hypothesis that u1 5
u2 5 ū ≠ 0 that is analogous to (2). Thus, we direct the test toward the alternative
of a common odds ratio in the same direction for each stratum, not toward the
more general omnibus alternative hypothesis that either log odds ratio differs
from zero in either direction, or H: u1 ≠ 0 and/or u2 ≠ 0.

Hence, this approach is not designed to detect a difference between groups in
any direction with respect either to the observable measures or to the informative
event that is represented by the omnibus alternative hypothesis. For this pur-
pose, we would employ a two df multivariate T 2-like test that requires estima-
tion of the covariance between the univariate rank tests, that for the measures
and that for the event times. Pocock, et al. describe such an approach [13].

All the developments in this paper have considered a one-directional test
that the experimental treatment produces a favorable result for either or both
measures, compared to the control. We can readily, however, conduct a two-
directional or two-sided test simply by referring the resulting rank test Z value
to the usual two-sided critical value, or by simply computing a two-sided p
value. In this case, we direct the test to the alternative hypothesis that either
the treated or control group is better as defined by the alternative hypothesis
(2); that is, by our using (2) where we label either the treated or control group
as group 1 and the other as group 2.

The central issue in the conduct of a worst-rank analysis is the validity of
the underlying assumptions regarding the nature of the process of the disease
under the alternative hypothesis (2). This analysis may be inefficient if we
perform the worst score imputation for a reason thought to represent an infor-
mative event, when in fact it is a random event so that observations are missing
at random. In this case, however, the test retains the desired type I error
probability under H0. Thus, we must consider carefully what we know about
the biological relationships between the reasons for missing data and the out-
come measure.

Also, the model above provides a clear argument for the worst-rank score
imputation when the assumed model applies; for example, death implies zero
exercise time. If the relationship between the missing data mechanism and the
outcome is less clear, then the worst-rank score approach may not be optimal.
For example, if the missing data mechanism implies lower than average values,
not necessarily zero values, then a worst-rank score does not truly represent
the relative status of a patient with a missing X. In such cases, however, the
worst-rank score approach may still be moderately efficient, depending on the
frequency of informatively missing values and on the strength of the relation-
ship between the missing data mechanism and the outcome measure.
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Comparison to Other Methods

Moyé, et al. employed a similar rank score approach in a study of post–
myocardial infarction cardiac disease [14]. They employed a U statistic that
compared treatments with respect to the death times and the values of the
observed posttreatment ejection fraction jointly. The U statistic compares each
patient from the first group to each patient from the second, and assigns a
score for each pair that depends on which patient is worse. This approach,
however, requires the investigator to assign an arbitrary score to instances
where a patient in one group dies before a patient in the other, and another
arbitrary score when both survive but one has a worse observed value than
the other. This has the disadvantage that the result of the test can depend on
the relative magnitudes of the scores assigned to each type of comparison.

One advantage, however, is that this approach allows the investigator also
to consider the time of the follow-up evaluation in cases where the observations
are not obtained at a fixed time for all subjects. Most studies, like that of
vesnarinone, schedule patients for follow-up assessments at specific times, but
the actual times of the visits vary. In such instances, investigators customarily
treat the data simply as though all visits were conducted exactly at the specified
time. They justify doing so on the grounds that the actual timing of the visit
should be random and thus should not be related to the observed value. Yet,
in instances where the timing of a visit may be related to the patient’s condition,
then the procedure introduced by Moyé, et al. allows the investigator to incorpo-
rate this information into the analysis.

The rank analyses herein are marginal in the sense that we perform a separate
analysis for the values at the time of each repeated measure, and then combine
the results over time. Another approach to the problem of informatively missing
observations is to consider the within-patient rate of change in the outcome
measure over time [15–19], as in a two-stage random effects model. If each
subject is characterized by a slope of change over time, then the subjects with
the most rapid rates of decline will reach the informative event before the end
of the trial and will have fewer measures over time. This situation leads to
biased and inefficient estimates of the average slopes in the two groups unless
we adjust for informative censoring of the follow-up time.

Implicit in some of these adjustments is the imputation of additional non-
zero values, in some cases after the time of the informative event. Thus, the
investigator assumes a nondeterministic relationship between the informative
event and the outcome measures. This may be appropriate in some, but not
all, cases. In my opinion, it is less appropriate to impute nonzero exercise times
after the time of death than it is to assume that any patient who has died has
a worse (lower) exercise time than all of the patients who survived. Shih, et
al. present a different approach [20]. They adopt a truncation model similar to
that employed herein, whereby they assume that subjects whose slopes fall
below some constant are informatively censored.

One disadvantage of these random effects models is the requirement that
only subjects with at least one, and in some cases two, posttreatment measures
may be included in the analysis. Subjects who are informatively censored
before investigators obtain any posttreatment measure are ignored and treated
essentially as missing-at-random. In the vesnarinone trial (see Table 1), three of
the eight informatively censored subjects could not be included in such analyses.
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APPENDIX

Here we consider the analysis of a single outcome measurement X at time
T. Then Gi(x) 5 P(xij < x|t . T) is the c.d.f. among survivors in the ith group
at time T. Also, Ki(t) is the c.d.f. of the survival or informative event times in
the ith group. We wish to test the bivariate null hypothesis H0 in (1) against
the bivariate alternative H1 in (2). Under the alternative (2), the expression G1 Â
G2 specifies that G1(x) . G2(x), or that the c.d.f. of group 1 dominates that of
group 2, indicating smaller values in group 1. Likewise, K1 Â K2 specifies that
K1(t) . K2(t).

Tied Worst-Rank Score Analysis

Let dij be an indicator function identifying whether the informative event
occurs in the ijth patient prior to the end of the study, dij 5 I(tij < T). Also, let
pi 5 E(dij) 5 Pr(tij < T) be the probability of the informative event in the ith
group. We then assume that the distributions K1 and K2 differ systematically,
if they differ at all, such that:

{K1(t) 5 K2(t), 0 , t < T} ⇔ p1 5 p2 (5)

and

{K1(t) . K2(t), 0 , t < T} ⇔ p1 . p2 . (6)

Now consider that we assign a worst value (h) to all those who have reached
the event, such that

x̃ij 5 (1 2 dij)xij 1 dijh (7)

and pi 5 Pr(xij 5 h). Then, let Fi(x) refer to the distribution of the realized
values of X̃, where

Fi(x) 5 (1 2 pi)Gi(x) I(x ? h) 1 pi I(x 5 h). (8)

A rank analysis based on the {x̃ij} provides a test of

H̃0: F1(x) 5 F2(x) (9)

against the alternative hypothesis

H̃1: F1(x) . F2(x). (10)

Note, however, that Fi(h) 5 pi and that Fi(x) differs from Gi(x) in that the
information truncated from the distribution of X because of informatively
missing observations has now been restored.

If there is no difference in survival times as in (5), then whether G1(x) equals
G2(x) is reflected by whether F1(x) equals F2(x), and vice versa. If there is a
difference in survival time as in (6), then both H1 in (2) and H̃1 in (10) are true,
regardless of whether G1(x) > G2(x). Likewise, if there is a difference in the
distributions of the observed values such that G1(x) . G2(x), then again both
H1 in (2) and H̃1 in (10) are true, regardless of whether K1(t) > K2(t). Then it
follows that H0 ⇔ H̃0, or that (1) ⇔ (8); and that H1 ⇔ H̃1 or (2) ⇔ (10). Thus
a rank test of (9) versus (10) using the worst score analysis provides an unbiased
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test (see Lehmann [8], p. 134) of (1) against (2) in the presence of informatively
missing observations.

In this development, if the operator in (5) is “⇒”, and in (6) is “⇐”, rather than
“⇔” in each, then in the conclusion, the operators are also likewise changed. In
this case, a significant test of (9) versus (10) would still lead to rejection of (1)
in favor of (2).

Untied Worst-Rank Score Analysis

In an untied analysis where higher values of X are better, then we define
the adjusted value as

x̃ij 5 (1 2 dij)xij 1 dij(h 1 tij), (11)

such that those informatively missing receive the lowest ranks, and these ranks
reflect the relative ordering of the event times. In the previous model using
(7), all informatively missing observations shared the same tied rank value.
Here these tied ranks are broken on the basis of the actual event times. The
resulting distribution of the realized values of X̃ is

Fi(x) 5 (1 2 pi)Gi(x) I(x > j) 1 piKi(x 2 h) I(x , j). (12)

If we use the same arguments as previously, a rank analysis based on the x̃ij

provides an unbiased test of (1) against (2).
Note that (5) and (6) are not necessary, because we use the actual event

times so that differences in F(.) reflect differences in G(.) and/or K(.). On the
other hand, if (5) and (6) are true, we may gain some efficiency by using an
analysis based on (11) versus one based on (7).

REFERENCES
1. Feldman AM, Baughman KL, Lee WK, et al. Usefulness of OPC-8212, a quinolinone

derivative, for chronic congestive heart failure in patients with ischemic heart disease
or idiopathic dilated cardiomyopathy. Am J Cardiol 1991;68:1201–1210.

2. Rubin D. Inference and missing data. Biometrika 1976;63:581–592.
3. Little RJA. Comments on “Inference and missing data” by Rubin DB. Biometrika

1976;63:590–591.
4. Little RJA, Rubin DB. Statistical Analysis with Missing Data. New York: Wiley; 1987.
5. Wittes J, Lakatos E, Probstfield J. Surrogate endpoints in clinical trials: cardiovascular

diseases. Stat Med 1989;8:415–425.
6. Feldman AM, Bristow MR, Parmley WW, et al. Effects of vesnarinone on morbidity

and mortality in patients with heart failure. N Engl J Med 1993;329:149–155.
7. Packer M. The search for the ideal positive inotropic agent. N Engl J Med 1993;

329:201–202.
8. Lehmann EL. Testing Statistical Hypotheses, 2nd ed. New York: Wiley; 1986.
9. Wei LJ, Lachin JM. Two-sample asymptotically distribution-free tests for incomplete

multivariate observations. J Am Stat Assoc 1984;79:653–661.
10. Thall PF, Lachin JM. Analysis of recurrent events: Non-parametric methods for

random-interval count data. J Am Stat Assoc 1988;83:339–347.
11. Lachin JM. Some large-sample distribution-free estimators and tests for multivariate

partially incomplete data from two populations. Stat Med 1992;11:1151–1170.



422 J.M. Lachin

12. Lachin JM. Distribution-free marginal analysis of repeated measures. Drug Inf J
1996;30:1017–1028.

13. Pocock SJ, Geller NL, Tsiatis AA. The analysis of multiple endpoints in clinical
trials. Biometrics 1987;43:487–498.
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