An Example of Two-sample Mendelian Randomization Study

Threechada Boonchan

PhD program in Clinical Epidemiology

Faculty of Medicine Ramathibodi Hospital, Mahidol University

Table 1. Steps for MR analysis

Description
Define hypotheses for causal inference
Select genetic IV using GWAS or supporting information in the literature
Identify the MR assumptions for the selected IV
Perform an MR analysis
Interpret and discuss results

GWAS = genome wide association studies; IV = instrumental variable; MR = Mendelian Randomization

Causal diagram for a Mendelian randomization study.

3 assumptions that must be satisfied to obtain suitable results:

- (1) The genetic variant (Z) is strongly associated with the exposure (X)
- (2) The genetic variant (Z) is **independent of the outcome (Y)**, given the exposure and all confounders (measured and unmeasured) of the exposure-outcome association
- (3) The genetic variant (Z) is independent of factors (U) (measured and unmeasured) that confound the exposure-outcome relationship

Assessment Causality in Associations Between Serum Uric Acid and Risk of Schizophrenia: A Two-Sample Bidirectional Mendelian Randomization Study

This article was published in the following Dove Press journal: Clinical Epidemiology

1 Define hypotheses for causal inference

• Aimed of to assess whether the relationships between **serum UA levels** and **schizophrenia** are causal and to determine the direction of the association.

2 Select genetic instrumental variable (IV) using GWAS or supporting information in the literature

- Utilizing <u>the summary</u> <u>data from genome-wide</u> <u>association studies</u> (GWAS) within the <u>Global</u> <u>Urate Genetics Consortium</u> (GUGC) and the Psychiatric Genomics Consortium.
 - SNP, single nucleotide polymorphism;
 GUGC, Global Urate Genetics
 Consortium;
 PGC, Psychiatric Genomics
 Consortium;
 MR, Mendelian randomization.
 GWAS: genome-wide association

studies

3 Identify the Mendelian Randomization (MR) <u>assumptions</u> for the selected IV

3 assumptions that must be satisfied to obtain suitable results:

- (1) Uric acid related SNP is strongly associated with the serum uric acid
- (2) Uric acid related SNP is <u>independent</u> of the Schizophrenia, given the exposure and all confounders (measured and unmeasured) of the exposure-outcome association
- (3) Uric acid related SNP is independent of <u>Smoking</u> (measured and unmeasured) that confound the exposure-outcome relationship

3 Identify the Mendelian Randomization (MR) assumptions for the selected IV

3 assumptions that must be satisfied to obtain suitable results:

- (1) Schizophrenia related SNP is <u>strongly associated</u> with the Schizophrenia
 - Schizophrenia related SNP is <u>independent</u> of the Serum Uric acid, given the exposure and all confounders (measured and unmeasured) of the exposure-outcome association
- (3) Schizophrenia related SNP is independent of <u>Smoking</u> (measured and unmeasured) that confound the exposure-outcome relationship

4 Perform an MR analysis

Three MR methods were used in two sets of two-sample MR analyses:

- (1) Inverse variance weighted (IVW) method
 - which the **SNP-outcome estimation** is **regressed** on the SNPexposure estimation.

This approach **assumes that all SNPs are valid instruments**; thus, the overall bias is zero;

(2) MR Egger regression analysis,

whose **slope represents the causal effect estimate**, is robust to invalid instruments against directional pleiotropy;

(3) Weighted median approach, which assesses consistently regardless of whether up to half of the weight comes from invalid instruments.

4 Perform an MR analysis

Table I Results of Two-Sample Bidirectional MR Analyses on the Causal Effects Between Serum UA and Schizophrenia

MR Method	Method Number of SNPs		SE	OR (95% CI)	P-value
Serum UA to schizophreniaª					
Inverse variance weighted	26	-0.060 (-0.144, 0.024)	0.043	0.942 (0.866, 1.025)	0.163
MR Egger	26	-0.037 (-0.158, 0.084)	0.062	0.964 (0.854, 1.087)	0.555
Weighted median	26	-0.035 (-0.097, 0.026)	0.031	0.965 (0.908, 1.026)	0.260
Serum UA to schizophrenia ^b					
Inverse variance weighted	21	-0.038 (-0.097, 0.020)	0.030	0.962 (0.908, 1.020)	0.195
MR Egger	21	-0.029 (-0.110, 0.053)	0.042	0.972 (0.895, 1.054)	0.496
Weighted median	21	-0.033 (-0.096, 0.030)	0.032	0.968 (0.908, 1.031)	0.307

4 Perform an MR analysis

Table I Results of Two-Sample Bidirectional MR Analyses on the Causal Effects Between Serum UA and Schizophrenia

MR Method	Number of SNPs	Beta (95% CI)	SE	OR (95% CI)	P-value
Schizophrenia to serum UA ^c					
Inverse variance weighted	45	-0.045 (-0.073, -0.017)	0.014	0.956 (0.929, 0.983)	0.002*
MR Egger	45	0.143 (-0.052, 0.337)	0.099	1.153 (0.949, 1.401)	0.159
Weighted median	45	-0.038 (-0.073, -0.002)	0.018	0.963 (0.930, 0.998)	0.036*
Schizophrenia to serum UA ^d					
Inverse variance weighted	44	-0.039 (-0.065, -0.013)	0.013	0.962 (0.937, 0.987)	0.003*
MR Egger	44	0.134 (-0.044, 0.311)	0.091	1.143 (0.957, 1.365)	0.147
Weighted median	44	-0.036 (-0.071, -0.001)	0.018	0.964 (0.931, 0.999)	0.043*

Figure S1 Leave-one-out analysis depicting uric acid (UA) (before removal of the 5 single nucleotide polymorphisms (SNPs) with potential pleiotropic effects)-to-schizophrenia Mendelian randomization (MR) results (inverse variance weighted (IVW) method) after excluding each of the genetic variants from the analysis one at a time. We could determine whether the overall effect is driven by one specific genetic variant through this analysis.

Abbreviation: MR, Mendelian randomization.

Figure S2 Leave-one-out analysis depicting serum UA (after removal of the 5 SNPs with potential pleiotropic effects)-to-schizophrenia MR results (IVW method) after excluding each of the genetic variants from the analysis one at a time. We could determine whether the overall effect is driven by one specific genetic variant through this analysis. Abbreviation: MR, Mendelian randomization.

Figure S3 Leave-one-out analysis depicting schizophrenia (before removal of the SNP with potential pleiotropic effects)-to-serum UA MR results (IVW method) after excluding each of the genetic variants from the analysis one at a time. We could determine whether the overall effect is driven by one specific genetic variant through this analysis.

Abbreviation: MR, Mendelian randomization.

Figure S4 Leave-one-out analysis depicting schizophrenia (after removal of the SNP with potential pleiotropic effects)-to-serum UA MR results (IVW method) after excluding each of the genetic variants from the analysis one at a time. We could determine whether the overall effect is driven by one specific genetic variant through this analysis.

Abbreviation: MR, Mendelian randomization.

GRSua and Schizophrenia,

The GRS_{UA} revealed <u>no causal effect of</u> <u>serum U</u>A on schizophrenia risk (per 10-s% increment in UA, OR: 0.963, 95% CI: 0.913–1.015, P = 0.154)

Effect size In(uric acid)

Figure 2 Genetic risk score GRSUA for schizophrenia.

Notes: The estimated effects on schizophrenia risk (vertical axis) are plotted against the estimated effects on serum UA (horizontal axis). The 95% confidence interval (CI) for each individual UA-associated SNP is shown by vertical grey lines. The estimate of causal effect of serum UA levels on schizophrenia risk is shown by a red solid line with gradient, and 95% CI is denoted by red dashed lines. **Abbreviation:** OR, odds ratio.

$\mathsf{GRS}_{\mathsf{SCZ}}$ and Serum UA

The GRS_{scz} showed a significant effect of schizophrenia on serum UA (per 10-s% increase in schizophrenia risk, beta: -0.039, SE: 0.013, P = 0.002)

Effect size schizophrenia In(OR)

Figure 3 Genetic risk score GRS_{SCZ} for serum UA.

Notes: The estimated effects on serum UA (vertical axis) are plotted against estimated effects on schizophrenia risk (horizontal axis). The 95% confidence interval (CI) for each individual schizophrenia-associated SNP is shown by vertical grey lines. The estimate of causal effect of schizophrenia risk on serum UA levels is shown by a red solid line with gradient, and 95% CI is denoted by red dashed lines. **Abbreviation:** OR, odds ratio.

Table 3 Cochran's Heterogeneity Statistic and MR Egger Intercept, Indicating Horizontal Pleiotropy for Two-Sample Bidirectional MR Analyses Between Serum UA and Schizophrenia

Exposure	Outcome	Number of SNPs	Cochran's Heterogeneity Statistic (IVW)		Cochran's Heterogeneity Statistic (MR Egger)		MR EGGER		
			Q	P-value	Q	P-value	Intercept	SE ^e	P-value
Serum UA Serum UA Schizophrenia Schizophrenia	Schizophrenia Schizophrenia Serum UA Serum UA	26 ^a 21 ^b 45 ^c 44 ^d	69.491 24.191 57.803 46.941	4.58E-06 0.234 0.079 0.314	68.708 24.051 53.302 43.120	3.42E-06 0.194 0.135 0.423	-0.003 -0.001 -0.014 -0.013	0.006 0.004 0.007 0.006	0.606 0.742 0.063 0.060

Notes: ^aSerum UA to schizophrenia MR before removal of the five SNPs with potential pleiotropic effects. ^bSerum UA to schizophrenia MR after removal of the five SNPs with potential pleiotropic effects. ^cSchizophrenia to serum UA MR before removal of the SNP with potential pleiotropic effects. ^dSchizophrenia to serum UA MR after removal of the SNP with potential pleiotropic effects. ^dSchizophrenia to serum UA MR after removal of the SNP with potential pleiotropic effects. ^dSchizophrenia to serum UA MR after removal of the SNP with potential pleiotropic effects. ^dSchizophrenia to serum UA MR after removal of the SNP with potential pleiotropic effects.

Abbreviations: MR, Mendelian randomization; UA, uric acid; SNP, single nucleotide polymorphism; IVW, inverse variance weighted; SE, standard error.

5 Interpret and discuss the results

- Three MR methods provided
 - No causal relationship between serum UA and schizophrenia.
 - Furthermore, GRS approach showed similar results in the three MR methods after adjustment for heterogeneity.

- Having causal effect of schizophrenia risk on serum UA after adjustment for heterogeneity (per 10-symmetric percentage increase in schizophrenia risk, beta: -0.039, standard error (SE): 0.013, P = 0.003; beta: -0.036, SE: 0.018, P = 0.043; beta: -0.039, SE: 0.013, P = 0.002; respectively).
- The heterogeneity (Q test) and sensitivity tests suggested no strong evidence of bias due to pleiotropy.

Thank you for your attention.