

Use of Machine Learning Models to Predict Death After Acute Myocardial Infarction

Jitsama Tanlamai Journal Club 2021 June 18

Background and Objective

Existing risk prediction models developed in the prediction of AMI outcomes have been limited

- Lack of inclusion of nonlinear effects and complex interactions among variables <u>in national samples</u>
- Only evaluated the effects in small patient groups

"To evaluate whether
contemporary machine learning methods
can improve prediction of in-hospital death
after hospitalization for acute myocardial infarction (AMI)
by including a larger number of variables
and identifying complex relationships
between predictors and outcomes"

Data Collection

- Cohort study
- Participants
 - Inclusion
 - Admit <u>1,128 participating hospitals</u> for AMI
 @ 1st Jan 2021 31st Dec 2016 (6 years)
 - ST-elevation myocardial infarction (STEMI) or not
 - Population = 993,905

Data Collection

- Data auditing NCDR data quality program 2012
 - Completeness

Proportion of missing data within fields

Consistency

Logically related fields contain values consistent with other fields

Accuracy

Agreement between registry data and the contents of original charts from the hospitals submitting data

Data

Output

Categorical variable - death from any cause during hospitalization

- Variables
 - Categorical and Continuous variables
 - 29 variables from NCDR standard
 : Current standard model uses 9 variables from 29 candidate variables (use LR for the selection)
 - Additional variables
 Available variables to a practitioner at the time of hospital presentation for AMI with < 1% missing variable rate</p>

Data

• Variables (Cont.)

	NCDR standard	Additional	NCDR standard + Addition
Demographic	3	3	6
Medical history	13	3	16
Presentation (e.g., after cardiac arrest)	5	-	5
Presentation ECG	4	3	7
Home medications	-	10	10
Initial laboratory tests	4	7	11
Total	29	26	55

Data

- **Set** #1 Model development
 - Exclusion
 - · Patients transferred to another facility for management
 - Missing a key risk factor included in the current standard for predicting mortality outcomes - history of percutaneous coronary intervention
 - Remained = 755,402
 - Imputation: Median and mode
- **Set** #2 Sensitivity test
 - Exclusion
 - Patients transferred to another facility for management
 - Missing a key risk factor included in the current standard for predicting mortality outcomes - history of percutaneous coronary intervention
 - (Drop variable) Covariates with missingness > 5%
 - Remained = 946,597
 - Imputation: 5-fold multiple imputation chained equations method (regression-based approach)

Data set #1 (Total n = 755,402)

Derivation cohort (training, #1) and validation cohort (test, #2)

Set #	Period	%	n	Objective
1.1a	1 st Apr 2011 – 30 th Sep 2013	75	564,918 –	Model development Lv. 1
1.1b	1 st Oct 2013 – 30 th Sep 2015	73	75 504,916 -	Model development Lv. 2
1.2	1 st Oct 2015 – 31 st Dec 2016	25	190,484	Model testing

• Model comparison – 3 models with baseline

• Baseline model: LR + LASSO

Tested models

1) NN : 1.1a+b, 1.2

2) XGBoost : 1.1a+b, 1.2

3) Meta classifier: 1.1a, 1.1b, 1.2

Tested model1) NN

Tested model (cont.)

2) XGBoost

- Series of decision trees
 - Interpretability
 - Can capture higher-order interactions and account for complex **nonlinear** relationships between model variables and outcomes

10

Loss function and regularization - noise robustness and less overfitting

Tested model (cont.)3) Meta classifier

Step1:

Step2:

Model Evaluation

- F1 score, precision, recall, PPR, NPR
- AU ROC/ C statistics and its 95% CI
- PR curve

MSE

Model Calibration

- Calibration slope
- Brier score (3-component decomposition)

$$BS = REL - RES + UNC$$

$$BS = rac{1}{N} \sum_{k=1}^K n_k (\mathbf{f_k} - ar{\mathbf{o}_k})^2 - rac{1}{N} \sum_{k=1}^K n_k (ar{\mathbf{o}_k} - ar{\mathbf{o}})^2 + ar{\mathbf{o}} \left(1 - ar{\mathbf{o}}
ight)$$

Model Calibration

- Shift table
 - Validation cohort (set B: 190,484)
 - Categorize target
 - Low risk: < 1%
 - Moderate risk: 1% 5%
 - High risk: > 5%
- Sensitivity analysis with 3 thresholds
 - < 1.5%
 - 1.5% 3%
 - > 3%
- Subgroup analysis

- n = 755,402 (derivation + validation cohort)
- Overall mortality rate = 4.4 %

NCDR standard model

- 9 variables
- LR
- AUC ROC = 0.867

• F1 score, precision, recall, PPR, NPR – Limited variable

	Baseline	e		1	
Characteristic	Logistic regression	LASSO	Neural network	XGBoost	Meta-classifier
/ariables include	ed in the model of McN	amara et al ²¹			
Model performance metrics					
AUROC (95% CI)	0.878 (0.875-0.881)	0.874 (0.870-0.879)	0.874 (0.870-0.878)	0.886 (0.882-0.890)	0.886 (0.882-0.890)
Precision- recall AUC	0.372	0.367	0.371	0.395	0.398
F score	0.415	0.408	0.411	0.432	0.432
Sensitivity	0.42 (0.41-0.43)	0.43 (0.42-0.45)	0.41 (0.40-0.42)	0.44 (0.43-0.45)	0.43 (0.42-0.44)
Specificity	0.97 (0.97-0.97)	0.97 (0.97-0.97)	0.97 (0.97-0.97)	0.97 (0.97-0.97)	0.98 (0.97-0.98)
PPV	0.41 (0.40-0.42)	0.38 (0.37-0.39)	0.41 (0.40-0.42)	0.42 (0.41-0.43)	0.44 (0.43-0.45)
NPV	0.97 (0.97-0.97)	0.97 (0.97-0.98)	0.97 (0.97-0.97)	0.98 (0.97-0.98)	0.97 (0.97-0.98)

• F1 score, precision, recall, PPR, NPR – Expanded variable set

	Baselin	e		1	
Characteristic	Logistic regression	LASSO	Neural network	XGBoost	Meta-classifier
Expanded variab	les included from the C	P-MI Registry			
Model performance metrics					
AUROC (95% CI)	0.888 (0.884-0.892)	0.886 (0.882-0.890)	0.885 (0.881-0.889)	0.898 (0.894-0.902)	0.899 (0.895-0.903)
Precision- recall AUC	0.421	0.415	0.406	0.451	0.453
F score	0.436	0.436	0.428	0.458	0.459
Sensitivity	0.47 (0.45-0.48)	0.42 (0.41-0.43)	0.43 (0.42-0.44)	0.45 (0.44-0.47)	0.43 (0.42-0.44)
Specificity	0.97 (0.97-0.97)	0.98 (0.98-0.98)	0.97 (0.97-0.98)	0.98 (0.98-0.98)	0.98 (0.98-0.98)
PPV	0.41 (0.40-0.42)	0.45 (0.44-0.46)	0.43 (0.42-0.44)	0.46 (0.45-0.47)	0.49 (0.48-0.50)
NPV	0.98 (0.98-0.98)	0.97 (0.97-0.98)	0.97 (0.97-0.98)	0.98 (0.98-0.98)	0.97 (0.97-0.98)

ROC – Limited variable

Data set #1.2 = 190,484

ROC – Expanded variable set

Data set #1.2 = 190,484

MSE

Calibration slope – Limited variable

Calibration slope – Expanded variable set

• Brier score – Limited variable

Baseline				1	
Characteristic	Logistic regression	LASSO	Neural network	XGBoost	Meta-classifier
Variables includ	ed in the model of McN	amara et al ²¹			
Model performance metrics					
Brier score					
Reliability, mean (SD), ×10 ⁻⁶	28.4 (9.2)	96.3 (16.5)	224.0 (26.1)	9.5 (3.8)	2.3 (2.1)
Resolution, mean (SD), ×10 ⁻³	5.6 (0.1)	5.5 (0.1)	5.4 (0.1)	5.8 (0.1)	5.9 (0.1)
Uncertainty	0.04	0.04	0.04	0.04	0.04
Overall, ×10 ⁻²	3.52	3.54	3.56	3.49	3.48

• Brier score – Expanded variable set

Baseline				1	
Characteristic	Logistic regression	LASSO	Neural network	XGBoost	Meta-classifier
Variables includ	ed in the model of McN	amara et al ²¹			
Model performance metrics Brier score					
Reliability, mean (SD), ×10 ⁻⁶	229.4 (25.6)	40.6 (10.3)	55.7 (11.2)	6.5 (3.5)	4.3 (2.6)
Resolution, mean (SD), ×10 ⁻³	6.0 (0.1)	5.9 (0.1)	5.8 (0.1)	6.4 (0.2)	6.5 (0.2)
Uncertainty	0.04	0.04	0.04	0.04	0.04
Overall, ×10 ⁻²	3.50	3.49	3.50	3.43	3.42

Shift table [expanded, better than limited]

	Expanded LR, No. of patients (% observed mortality)					
Model	<1%	1%-5%	>5%	All		
XGBoost vs LR						
Expanded XGBoost						
<1%	65 193 (0.27)	31 971 (0.65)	422 (1.18)	97 586 (0.40)		
1%-5%	3384 (0.95)	44 486 (2.21)	13 155 (3.91)	61 025 (2.51)		
>5%	68 (2.94)	2899 (6.21)	28 906 (20.79)	31 873 (19.42)	XGB	
All	68 645 (0.30)	79 356 (1.73)	42 483 (15.37)	190 484 (4.26)		
Meta-classifier vs LR		Basi	eline			
Expanded meta-classifie	r					
<1%	65 694 (0.27)	30 661 (0.65)	175 (0.00)	96 530 (0.39)		
1%-5%	2930 (1.06)	45 726 (2.17)	9033 (3.55)	57 689 (2.33)		
>5%	21 (0.00)	2969 (6.03)	33 275 (18.66)	36 265 (17.61)	Meta-classifie	
All	68 645 (0.30)	79 356 (1.73)	42 483 (15.37)	190 484 (4.26)		

Baseline

Result - Model Calibration

Sensitivity analysis

Data set #2 = 946,597 (multiple imputation)

eTable 5. Area Under the Receiver Operator Characteristic Curve for the 5-Fold Multiple Imputation. Values in square brackets represents 95% confidence intervals.

Model	Models Constructed using Limited variables	Models Constructed using Expanded variables
Logistic Regression	0.877 [0.877-0.877]	0.888 [0.888-0.888]
Neural Network	0.874 [0.873-0.875]	0.886 [0.884-0.888]
XGBoost	0.885 [0.884-0.885]	0.897 [0.897-0.898]
Meta-classifier	0.885 [0.885-0.886]	0.898 [0.897-0.898]

Baseline

Subgroup analysis

Group Logistic **Neural network** XGBoost Metaclassifier regression 0.93 [0.91, 0.95] 0.83 [0.82, 0.85] 0.98 [0.96, 1.00] Overall 0.99 [0.98, 1.00] Age in years 18-44 0.90 [0.87, 0.93] 0.81 [0.77, 0.84] 0.98 [0.95, 1.00] 0.97 [0.94, 1.00] 45-64 0.83 [0.82, 0.85] 0.93 [0.92, 0.94] 0.97 [0.96, 0.98] 0.98 [0.96, 1.00] 0.94 [0.91, 0.97] 0.99 [0.96, 1.03] ≥65 0.83 [0.81, 0.86] 1.00 [0.99, 1.01] Sex 0.94 [0.92, 0.95] 0.84 [0.82, 0.85] 0.98 [0.97, 1.00] Male 0.99 [0.98, 1.01] 0.92 [0.89, 0.95] 0.82 [0.80, 0.85] 0.97 [0.94, 1.00] 0.97 [0.96, 0.99] Female Race/ethnicity 0.93 [0.92, 0.95] 0.83 [0.82, 0.84] 0.98 [0.96, 1.00] White 0.99 [0.97, 1.00] 0.95 [0.89, 1.00] 0.86 [0.83, 0.90] 1.00 [0.94, 1.06] 1.01 [0.97, 1.04] Black

27

Conclusion and limitation

- None of the tested ML models were substantive improvement in the discrimination of in-hospital mortality after AMI
- XGB and meta-classifier models improved accuracy of risk for high-risk patients (compared with LR)
- Better clarify the individual risk for adverse outcomes
- Relevant information, such as duration of comorbidities was not captured
- Certain prognostic characteristics of the patients' general health are not included