

Use of Machine Learning Models to Predict Death After Acute Myocardial Infarction

Jitsama Tanlamai Journal Club 2021 June 18

> JAMA Cardiol. doi:10.1001/jamacardio.2021.0122 Published online March 10, 2021.

Existing risk prediction models developed in the prediction of AMI outcomes have been limited

- Lack of inclusion of nonlinear effects and complex interactions among variables <u>in national samples</u>
- Only evaluated the effects in small patient groups

"To evaluate whether contemporary machine learning methods can improve prediction of in-hospital death after hospitalization for acute myocardial infarction (AMI) by including a <u>larger number of variables</u> and identifying complex relationships between predictors and outcomes"

Data Collection

- Cohort study
- Participants
 - Inclusion
 - Admit <u>1,128 participating hospitals</u> for AMI
 @ 1st Jan 2021 31st Dec 2016 (6 years)
 - ST-elevation myocardial infarction (STEMI) or not
 - Population = 993,905

Data Collection

- Data auditing NCDR data quality program 2012
 - Completeness

Proportion of missing data within fields

• Consistency

Logically related fields contain values consistent with other fields

• Accuracy

Agreement between registry data and the contents of original charts from the hospitals submitting data

• Output

Categorical variable - death from any cause during hospitalization

- Variables
 - Categorical and Continuous variables
 - 29 variables from NCDR standard
 - : **Current standard model uses 9 variables** from 29 candidate variables (use LR for the selection)
 - Additional variables Available variables to a practitioner at the time of hospital presentation for AMI with < 1% missing variable rate

Data

• Variables (Cont.)

	NCDR standard	Additional	NCDR standard + Addition
Demographic	3	3	6
Medical history	13	3	16
Presentation (e.g., after cardiac arrest)	5	-	5
Presentation ECG	4	3	7
Home medications	-	10	10
Initial laboratory tests	4	7	11
Total	29	26	55

Set #1 – Model development

- Exclusion
 - Patients transferred to another facility for management
 - Missing a key risk factor included in the current standard for predicting mortality outcomes history of percutaneous coronary intervention
- Remained = 755,402
- Imputation: Median and mode
- Set #2 Sensitivity test
 - Exclusion
 - Patients transferred to another facility for management
 - Missing a key risk factor included in the current standard for predicting mortality outcomes - history of percutaneous coronary intervention
 - (Drop variable) Covariates with missingness > 5%
 - Remained = 946,597
 - Imputation: 5-fold multiple imputation chained equations method (regression-based approach)

Data set #1 (Total n = 755,402)

Derivation cohort (training, #1) and validation cohort (test, #2)

Set #	Period	%	n	Objective
1.1a	1 st Apr 2011 – 30 th Sep 2013	75	564,918 -	Model development Lv. 1
1.1b	1 st Oct 2013 – 30 th Sep 2015	75	504,510 -	Model development Lv. 2
1.2	1 st Oct 2015 – 31 st Dec 2016	25	190,484	Model testing

- Model comparison 3 models with baseline
 - Baseline model: LR + LASSO
 - Tested models
 - 1) NN : 1.1a+b, 1.2
 - 2) XGBoost : 1.1a+b, 1.2
 - 3) Meta classifier : 1.1a, 1.1b, 1.2

Model Development

Tested model1) NN

Model Development

- Tested model (cont.)
 - 2) XGBoost
 - Series of decision trees
 - Interpretability
 - Can capture higher-order interactions and account for complex **nonlinear** relationships between model variables and outcomes

10

Loss function and regularization - noise robustness and less overfitting

Model Development

Tested model (cont.)3) Meta classifier

Model Evaluation

- F1 score, precision, recall, PPR, NPR
- AU ROC/ C statistics and its 95% CI
- PR curve

• MSE

Model Calibration

- Calibration slope
- Brier score (3-component decomposition)

Model Calibration

- Shift table
 - Validation cohort (set B: 190,484)
 - Categorize target
 - Low risk: < 1%
 - Moderate risk: 1% 5%
 - High risk: > 5%
- Sensitivity analysis with 3 thresholds
 - < 1.5%
 - 1.5% 3%
 - > 3%
- Subgroup analysis

- n = 755,402 (derivation + validation cohort)
- Overall mortality rate = 4.4 %

NCDR standard model

- 9 variables
- LR
- AUC ROC = 0.867

• F1 score, precision, recall, PPR, NPR – Limited variable

	Baseline	2			
Characteristic	Logistic regression	LASSO	Neural network	XGBoost	Meta-classifier
Variables include	d in the model of McNa	amara et al ²¹			
Model performance metrics					
AUROC (95% CI)	0.878 (0.875-0.881)	0.874 (0.870-0.879)	0.874 (0.870-0.878)	0.886 (0.882-0.890)	0.886 (0.882-0.890)
Precision- recall AUC	0.372	0.367	0.371	0.395	0.398
F score	0.415	0.408	0.411	0.432	0.432
Sensitivity	0.42 (0.41-0.43)	0.43 (0.42-0.45)	0.41 (0.40-0.42)	0.44 (0.43-0.45)	0.43 (0.42-0.44)
Specificity	0.97 (0.97-0.97)	0.97 (0.97-0.97)	0.97 (0.97-0.97)	0.97 (0.97-0.97)	0.98 (0.97-0.98)
PPV	0.41 (0.40-0.42)	0.38 (0.37-0.39)	0.41 (0.40-0.42)	0.42 (0.41-0.43)	0.44 (0.43-0.45)
NPV	0.97 (0.97-0.97)	0.97 (0.97-0.98)	0.97 (0.97-0.97)	0.98 (0.97-0.98)	0.97 (0.97-0.98)

• F1 score, precision, recall, PPR, NPR – Expanded variable set

Characteristic	Logistic regression	LASSO	Neural network	XGBoost	Meta-classifier
Expanded variab	Expanded variables included from the CP-MI Registry				
Model performance metrics					
AUROC (95% CI)	0.888 (0.884-0.892)	0.886 (0.882-0.890)	0.885 (0.881-0.889)	0.898 (0.894-0.902)	0.899 (0.895-0.903)
Precision- recall AUC	0.421	0.415	0.406	0.451	0.453
F score	0.436	0.436	0.428	0.458	0.459
Sensitivity	0.47 (0.45-0.48)	0.42 (0.41-0.43)	0.43 (0.42-0.44)	0.45 (0.44-0.47)	0.43 (0.42-0.44)
Specificity	0.97 (0.97-0.97)	0.98 (0.98-0.98)	0.97 (0.97-0.98)	0.98 (0.98-0.98)	0.98 (0.98-0.98)
PPV	0.41 (0.40-0.42)	0.45 (0.44-0.46)	0.43 (0.42-0.44)	0.46 (0.45-0.47)	0.49 (0.48-0.50)
NPV	0.98 (0.98-0.98)	0.97 (0.97-0.98)	0.97 (0.97-0.98)	0.98 (0.98-0.98)	0.97 (0.97-0.98)

Baseline

• **ROC** – Limited variable

Receiver Operator Characteristic Curves for McNamara Variable Set

Precision Recall Curves for McNamara Variable Set

• ROC – Expanded variable set

Receiver Operator Characteristic Curves for Expanded Variable Set

Precision Recall Curves for Expanded Variable Set

• MSE

• Calibration slope – Limited variable

21

• Calibration slope – Expanded variable set

22

Result - Model Calibration

• Brier score – Limited variable

-	Baseli	ne		1	
Characteristic	Logistic regression	LASSO	Neural network	XGBoost	Meta-classifier
Variables includ	ed in the model of McN	amara et al ²¹			
Model performance metrics					
Brier score					
Reliability, mean (SD), ×10 ^{−6}	28.4 (9.2)	96.3 (16.5)	224.0 (26.1)	9.5 (3.8)	2.3 (2.1)
Resolution, mean (SD), ×10 ⁻³	5.6 (0.1)	5.5 (0.1)	5.4 (0.1)	5.8 (0.1)	5.9 (0.1)
Uncertainty	0.04	0.04	0.04	0.04	0.04
Overall, ×10 ⁻²	3.52	3.54	3.56	3.49	3.48

Result - Model Calibration

• Brier score – Expanded variable set

-	Baseli	ne		1	
Characteristic	Logistic regression	LASSO	Neural network	XGBoost	Meta-classifier
Variables include	ed in the model of McN	amara et al ²¹			
Model performance metrics Brier score					
Reliability, mean (SD), ×10 ⁻⁶	229.4 (25.6)	40.6 (10.3)	55.7 (11.2)	6.5 (3.5)	4.3 (2.6)
Resolution, mean (SD), ×10 ⁻³	6.0 (0.1)	5.9 (0.1)	5.8 (0.1)	6.4 (0.2)	6.5 (0.2)
Uncertainty	0.04	0.04	0.04	0.04	0.04
Overall, ×10 ⁻²	3.50	3.49	3.50	3.43	3.42

Result - Model Calibration

9033 (3.55)

33 275 (18.66)

42 483 (15.37)

57 689 (2.33)

36 265 (17.61)

190 484 (4.26)

Shift table [expanded, better than limited]

2930 (1.06)

68 6 45 (0.30)

21 (0.00)

	Expanded LR, No.	Expanded LR, No. of patients (% observed mortality)							
Model	<1%	1%-5%	>5%	All					
XGBoost vs LR									
Expanded XGBoost	t								
<1%	65 193 (0.27)	31971 (0.65)	422 (1.18)	97 586 (0.40)					
1%-5%	3384 (0.95)	44 486 (2.21)	13 155 (3.91)	61 025 (2.51)					
>5%	68 (2.94)	2899 (6.21)	28 906 (20.79)	31 873 (19.42)	XGE				
All	68 645 (0.30)	79 356 (1.73)	42 483 (15.37)	190 484 (4.26)					
Meta-classifier vs	LR	Base	eline						
Expanded meta-cl	assif <mark>i</mark> er								
<1%	65 694 (0.27)	30 661 (0.65)	175 (0.00)	96 530 (0.39)					

45726 (2.17)

2969 (6.03)

79356(1.73)

Baseline

1%-5%

>5%

All

Meta-classifier

Result - Model Calibration

Sensitivity analysis

Data set #2 = 946,597 (multiple imputation)

eTable 5. Area Under the Receiver Operator Characteristic Curve for the 5-Fold Multiple Imputation. Values in square brackets represents 95% confidence intervals.

	Model	Models Constructed using Limited variables	Models Constructed using Expanded variables
aseline	Logistic Regression	0.877 [0.877-0.877]	0.888 [0.888-0.888]
	Neural Network	0.874 [0.873-0.875]	0.886 [0.884-0.888]
	XGBoost	0.885 [0.884-0.885]	0.897 [0.897-0.898]
	Meta-classifier	0.885 [0.885-0.886]	0.898 [0.897-0.898]

• • • • • • •

Bacolino

• Subgroup analysis

Baseline						
Group	Logistic regression	Neural network	XGBoost	Metaclassifier		
Overall	0.93 [0.91, 0.95]	0.83 [0.82, 0.85]	0.98 [0.96, 1.00]	0.99 [0.98, 1.00]		
Age in years						
18-44	0.90 [0.87, 0.93]	0.81 [0.77, 0.84]	0.98 [0.95, 1.00]	0.97 [0.94, 1.00]		
45-64	0.93 [0.92, 0.94]	0.83 [0.82, 0.85]	0.97 [0.96, 0.98]	0.98 [0.96, 1.00]		
≥65	0.94 [0.91, 0.97]	0.83 [0.81, 0.86]	0.99 [0.96, 1.03]	1.00 [0.99, 1.01]		
Sex						
Male	0.94 [0.92, 0.95]	0.84 [0.82, 0.85]	0.98 [0.97, 1.00]	0.99 [0.98, 1.01]		
Female	0.92 [0.89, 0.95]	0.82 [0.80, 0.85]	0.97 [0.94, 1.00]	0.97 [0.96, 0.99]		
Race/ethnicity						
White	0.93 [0.92, 0.95]	0.83 [0.82, 0.84]	0.98 [0.96, 1.00]	0.99 [0.97, 1.00]		
Black	0.95 [0.89, 1.00]	0.86 [0.83, 0.90]	1.00 [0.94, 1.06]	1.01 [0.97, 1.04]		

- None of the tested ML models were substantive improvement in the discrimination of in-hospital mortality after AMI
- XGB and meta-classifier models improved accuracy of risk for high-risk patients (compared with LR)
- Better clarify the individual risk for adverse outcomes
- Relevant information, such as duration of comorbidities was not captured
- Certain prognostic characteristics of the patients' general health are not included