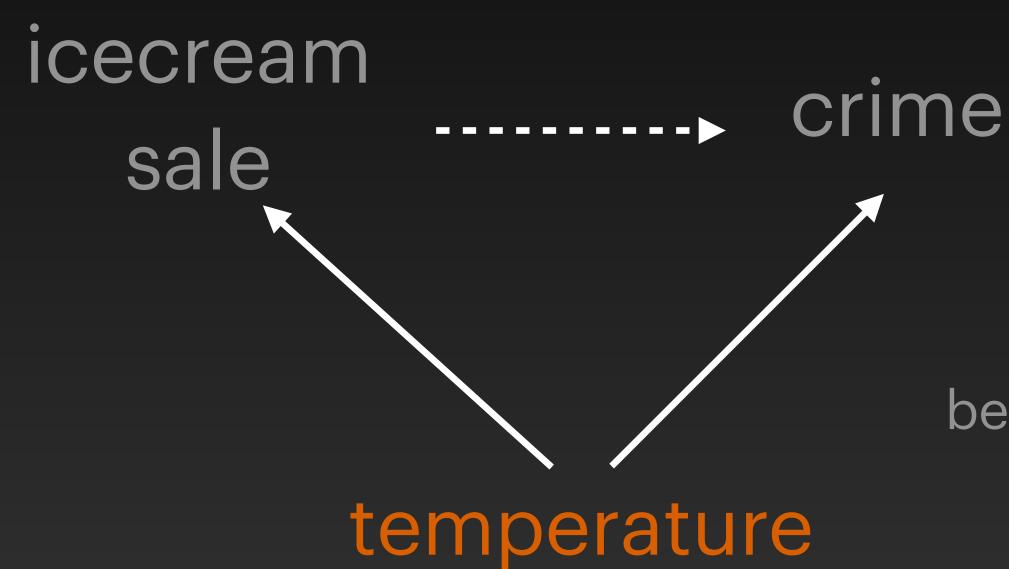
Journal Club Statistical methods for handling nonadherence in RCT

Commented by Amarit Tansawet 9-11-20

lcecream causes crime?



higher temperature higher change of icecream saling higher chance of crime

P(crime) depended on P(icecream sale) because both of them are linked with temperature

> crime depended on icecream sale and temperature = confounder

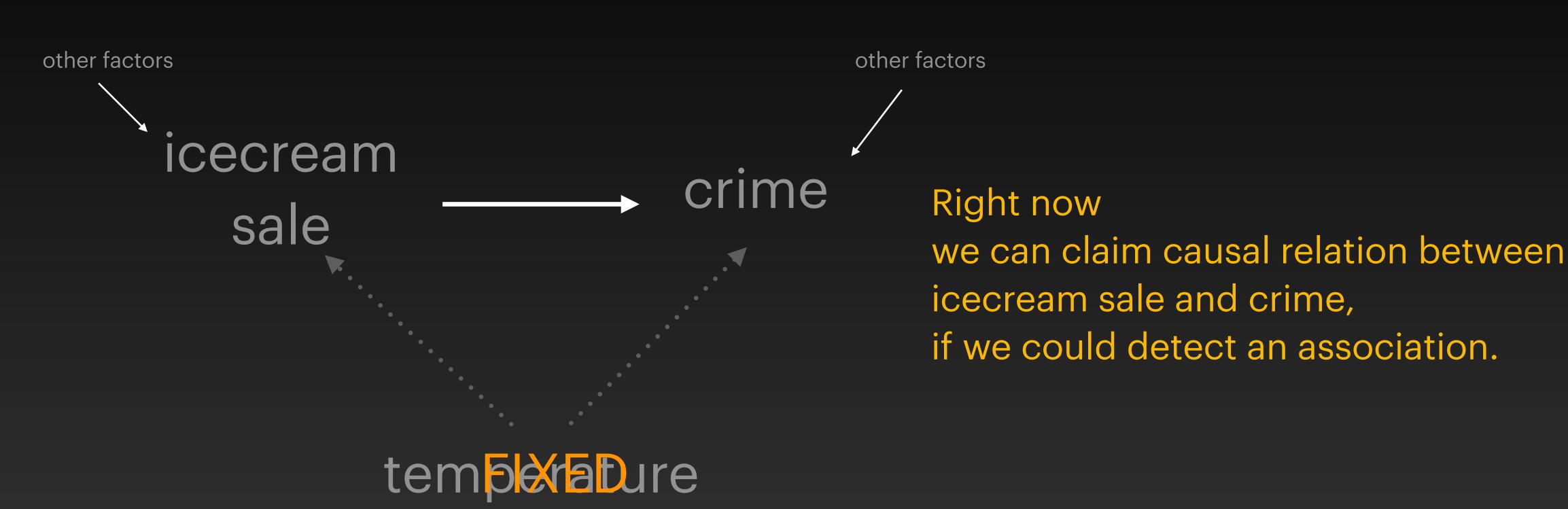


température

IF we fixed the value of temperature

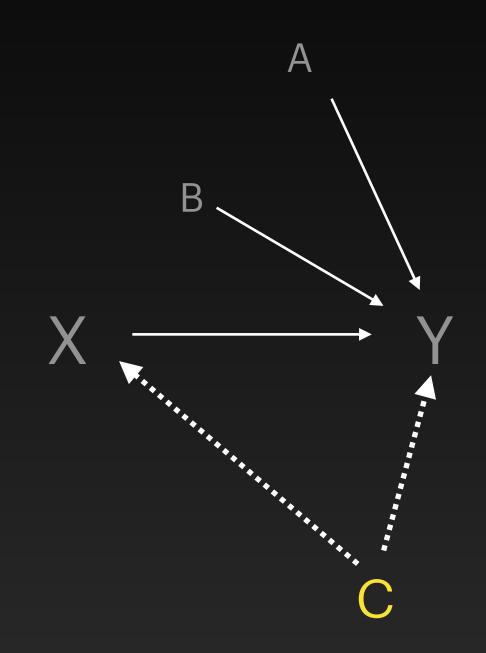
P(crime) become independent on P(icecream sale)

crime and icecream sale become independent, condition on temperature



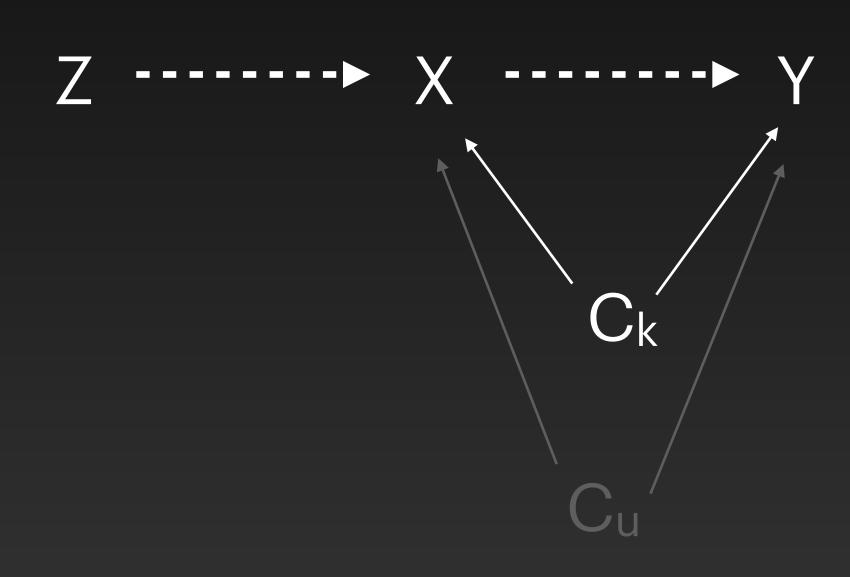
To find causal relation between X and Y, X and Y must be independent, condition on confounder.

Model



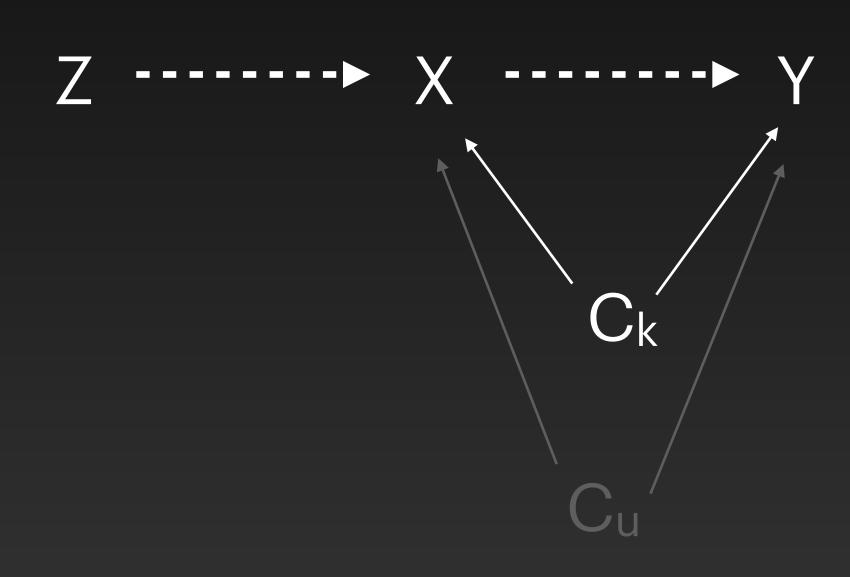
If C is a confounder, adding C in the model should significantly change the effect of X on Y.

IV model



Z= treatment allocation X= treatment received Y= outcome C_k= known confounder C_u= unknown confounder

IV mode

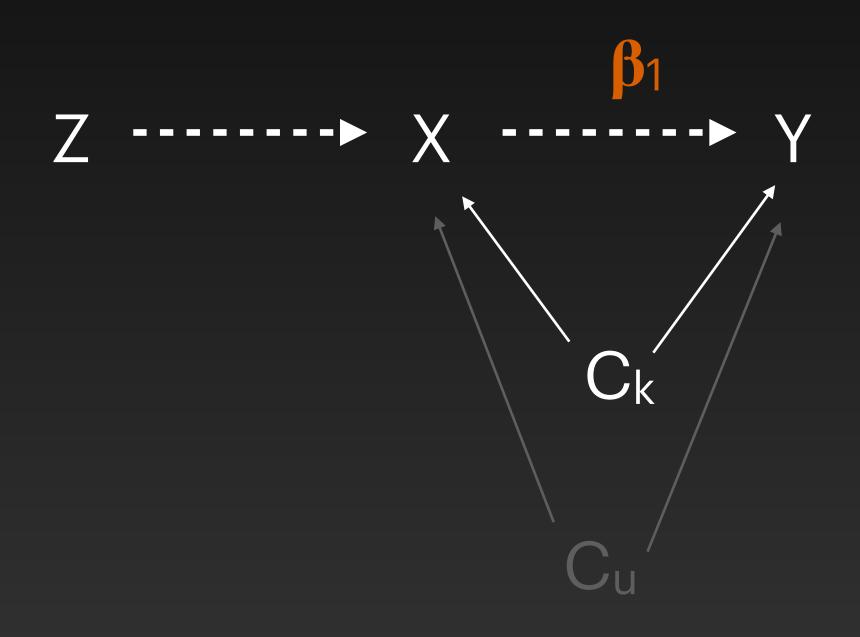


(1) It must be a strong predictor of exposure.

(2) Its associations with both exposure and outcome must be unconfounded, at least conditionally on measured covariates.

(3) All of its association with the outcome must be mediated by exposure.

IV mode



 $Y = \beta_0 + \beta_1 X + \beta_2 C_k + \varepsilon \dots \text{ bias because we don't know } C_u$

$$X = \gamma_0 + \gamma_1 Z + \gamma_2 C_k + \eta \dots \text{ unbias}$$

.... 1st stage

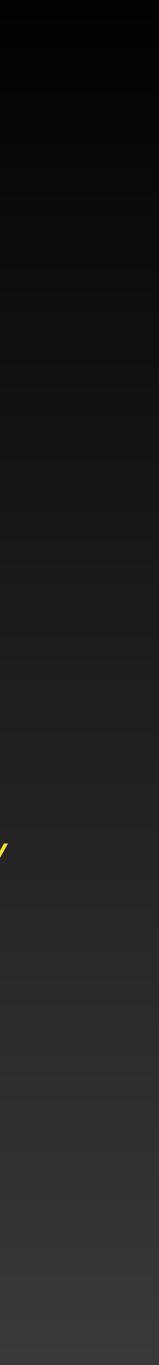
$$= \beta_0 + \beta_1(\gamma_0 + \gamma_1 Z + \gamma_2 C_k + \eta) + \beta_2 C_k + \epsilon$$

$$= \beta_0 + \beta_1 \gamma_0 + \beta_1 \gamma_1 Z + (\beta_1 \gamma_2 + \beta_2) C_k + \beta_1 \eta + \epsilon$$

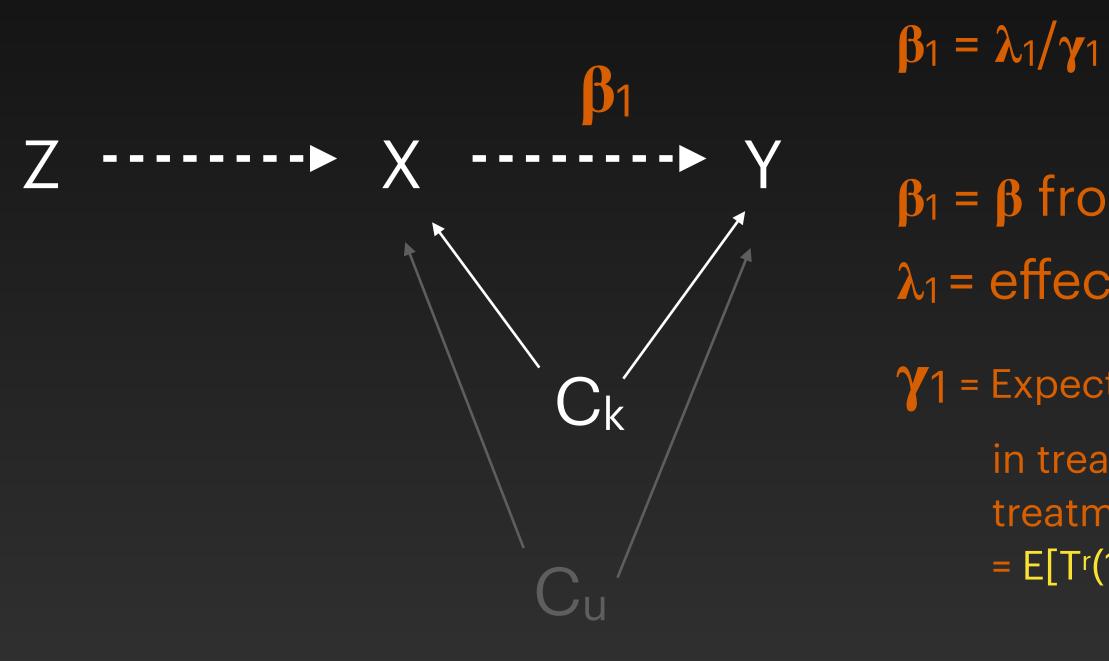
$$= \lambda_0 + \lambda_1 Z + \lambda_2 C_k + \Psi \dots 2nd \text{ stage, also unbias}$$

unbias ... no confounder between Z and X, and Z and Y

 $\beta_1 = \lambda_1/\gamma_1$



IV mode



$$Y = \beta_0 + \beta_1 X + \beta_2 C_k + \epsilon$$
$$X = \gamma_0 + \gamma_1 Z + \gamma_2 C_k + \eta$$

 $Y = \lambda_0 + \lambda_1 Z + \lambda_2 C_k + \Psi$

 $\beta_1 = \beta$ from IV-estimator = β_{IV} λ_1 = effect of Z on Y = β_{ITT}

Y1 = Expected value of difference in treatment received between treatment assigned and not assigned $= E[T^{r}(1) - T^{r}(0)]$

 $\beta_{IV} = \beta_{ITT} / E[T^{r}(1) - T^{r}(0)] \dots *$

Rubin causal model

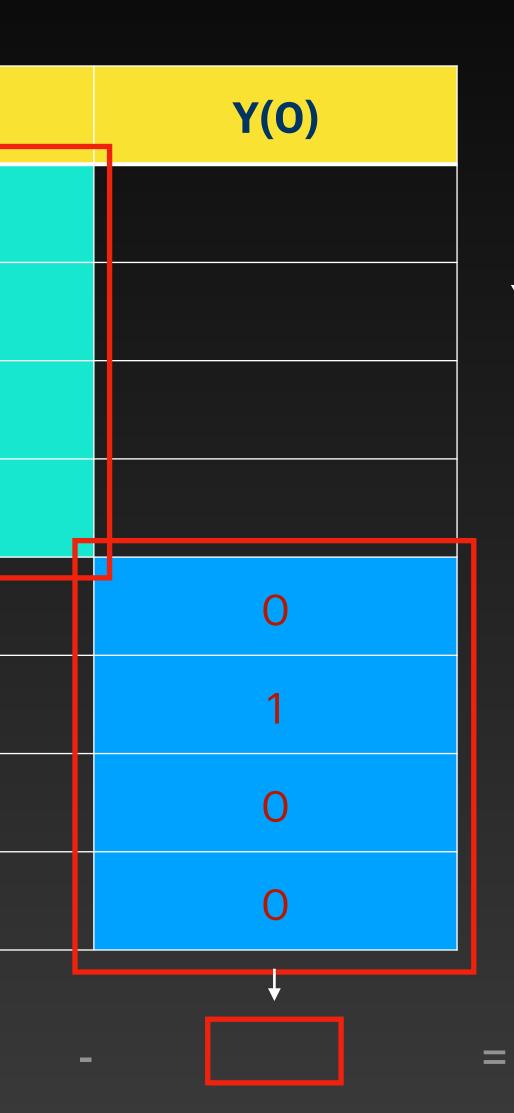
SUTVA — the stable unit treatment value assumption

The potential outcomes for any unit do not vary with the treatments assigned to other units, and, for each unit, there are no different forms or versions of each treatment level, which lead to different potential outcomes.

Rubin causal model

Unit	Y(1)
1	1
2	1
3	0
4	0
5	
6	
7	
8	

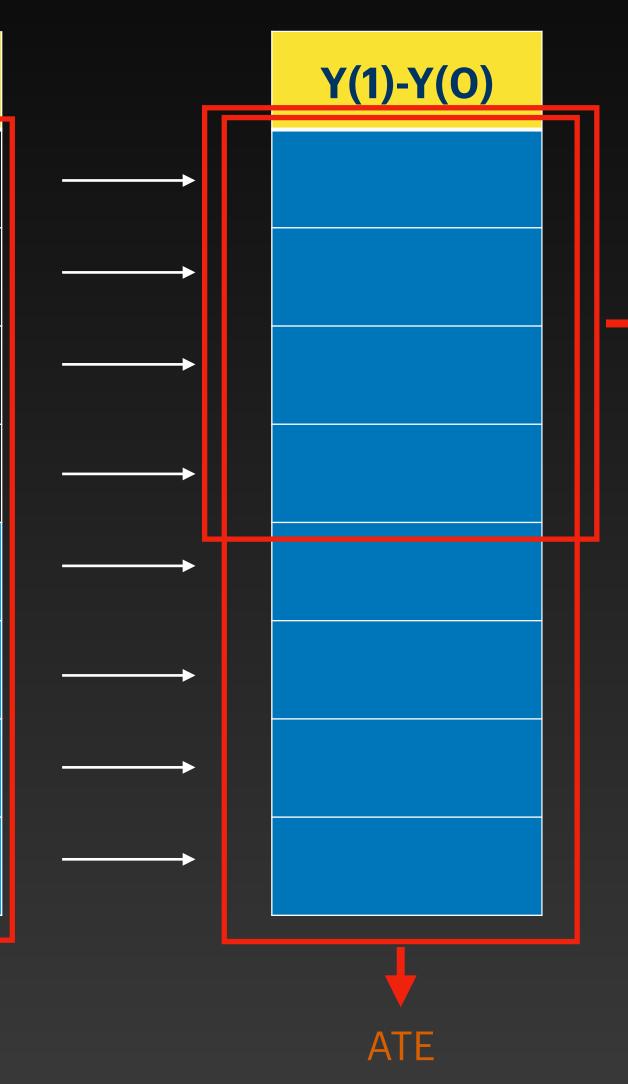
What have generally done



Y(1) = outcome when unit received intervention Y(0) = outcome whenunit didn't receive intervention

Rubin causal model

Unit	Y(1)	Y(O)
1	Ο	?
2	Ο	?
3	Ο	?
4	Ο	?
5	?	О
6	?	О
7	?	О
8	?	О
	POM	POM



- ATET

However, we cannot know what we did not observe.

Rubin causal mode

In RCT, previous 2 slides yield the same results \therefore distribution of Y(0) in the group assigned to (1) (i.e., counterfactual) is the same as distribution of Y(0) in the group assigned to (0)(and also Y(1))

What if, randomization was violated !!!

Zi	Xi
Treatment assignment	Trea rec
	1

1 = assign to treatment 0 = assign to control

(Z_i)

atment ceived

= receive treatment 0 = receive control

> $X_i(1) = 1$ $X_{i}(1) = 0$ $X_i(O) = 1$ $X_i(O) = O$



Outcome

1 = cure0 = not cure

 $Y_i(Z,X)$ $Y_i(1,1) = 1$ $Y_i(1,1) = 0$ $Y_i(1,0) = 1$ $Y_{i}(1,0) = 0$ $Y_i(0,1) = 1$ $Y_i(1,0) = 0$ $Y_{i}(O,O) = 1$ $Y_i(O,O) = O$

Compliance

individual who

 $X_i(1) = 1$, $X_i(0) = 0$ $X_i(1) = 1$, $X_i(0) = 1$ $X_{i}(1) = O$, $X_{i}(O) = O$

 $X_{i}(1) = 0$, $X_{i}(0) = 1$ Defier

* keep in mind that we can observe either X(1) or X(0) in individual but not both. Thus, we cannot idenfity the class of idividual. *

Complier

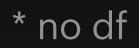
Monotonicity assume no defier

Always-taker

Never-taker

Unit	Z	X(1)	X(O)
1	1	1	
2	1	1	
3	1	1	
4	1	0	
5	0		Ο
6	Ο		О
7	Ο		о
8	0		1

E[X(1) - X(0)]= E[Tr(1) - Tr(0)]



		Z	
		Ο	1
	Ο	nt/co	nt
X	1	at	at/co

 $E[X(1) - X(0)] \longrightarrow E[(co+at) - (at)] = E[co] = \pi_{co}$

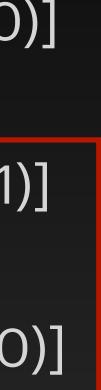
Effect of Z on Y

Unit	Z	Y(Z=1)	Y(Z=0)
1	1	\bigtriangleup	
2	1	\bigtriangleup	
3	1	\bigtriangleup	
4	1	\bigtriangleup	
5	0		\bigtriangleup
6	Ο		\bigtriangleup
7	Ο		\bigtriangleup
8	0		\bigtriangleup

E[Y(Z=1) - Y(Z=0)]

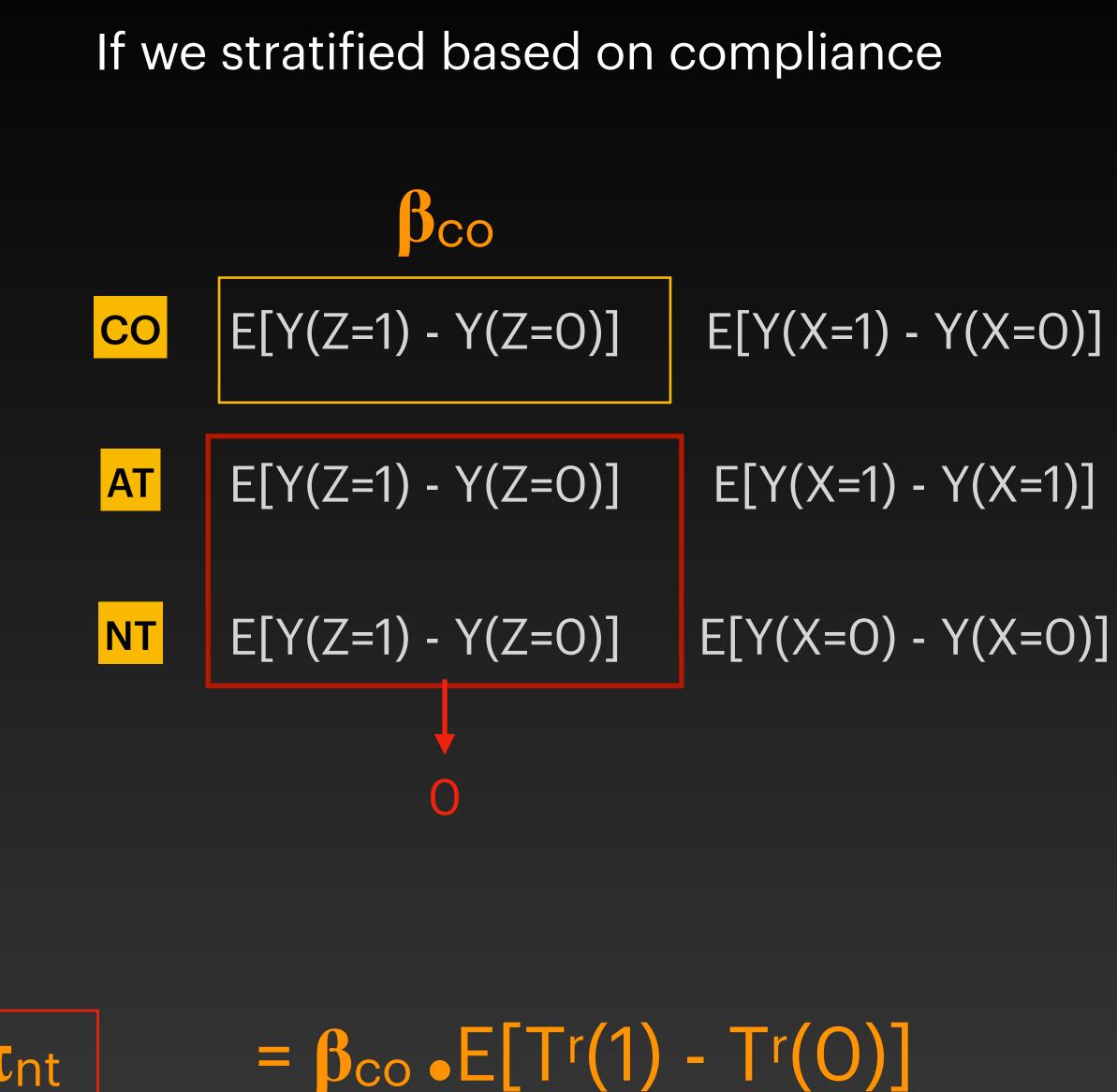
= βιττ

If we stratified based on compliance E[Y(Z=1) - Y(Z=0)] = E[Y(X=1) - Y(X=0)]CO E[Y(X=1) - Y(X=1)]E[Y(Z=1) - Y(Z=O)]AT E[Y(Z=1) - Y(Z=O)]E[Y(X=O) - Y(X=O)]NT **Exclusion Restriction**



Unit	Z	Y(Z=1)	Y(Z=O)
1	1	\bigtriangleup	
2	1	\bigtriangleup	
3	1	\bigtriangleup	
4	1	\bigtriangleup	
5	0		\bigtriangleup
6	Ο		\bigtriangleup
7	0		\bigtriangleup
8	0		\bigtriangleup

 $\beta_{\text{ITT}} = \beta_{\text{co}} * \pi_{\text{co}} + 0 * \pi_{\text{at}} + 0 * \pi_{\text{nt}}$



Complier-averaged causal effect (CACE)

Local average treatment effect (LATE)

CACE can be model-based

Flexible way to incorporate covariables

Using pre-treatment covariables could relax exclusion restriction

Method for parameter estimation

- 2SLS
- MM
 - set population moment = sample moment ($\mu_k = \mu_k^*$; k^{th} moment)
 - may not get parameter or get unrealistic value •
- ML
 - finding parameter that are most likely to produce observed data by maximizing the likelihood function •
 - more precise estimand •
- etc

Open Access

BMJ Open Estimating treatment effects in randomised controlled trials with non-compliance: a simulation study

Chenglin Ye,^{1,2} Joseph Beyene,¹ Gina Browne,^{1,3} Lehana Thabane^{1,2}

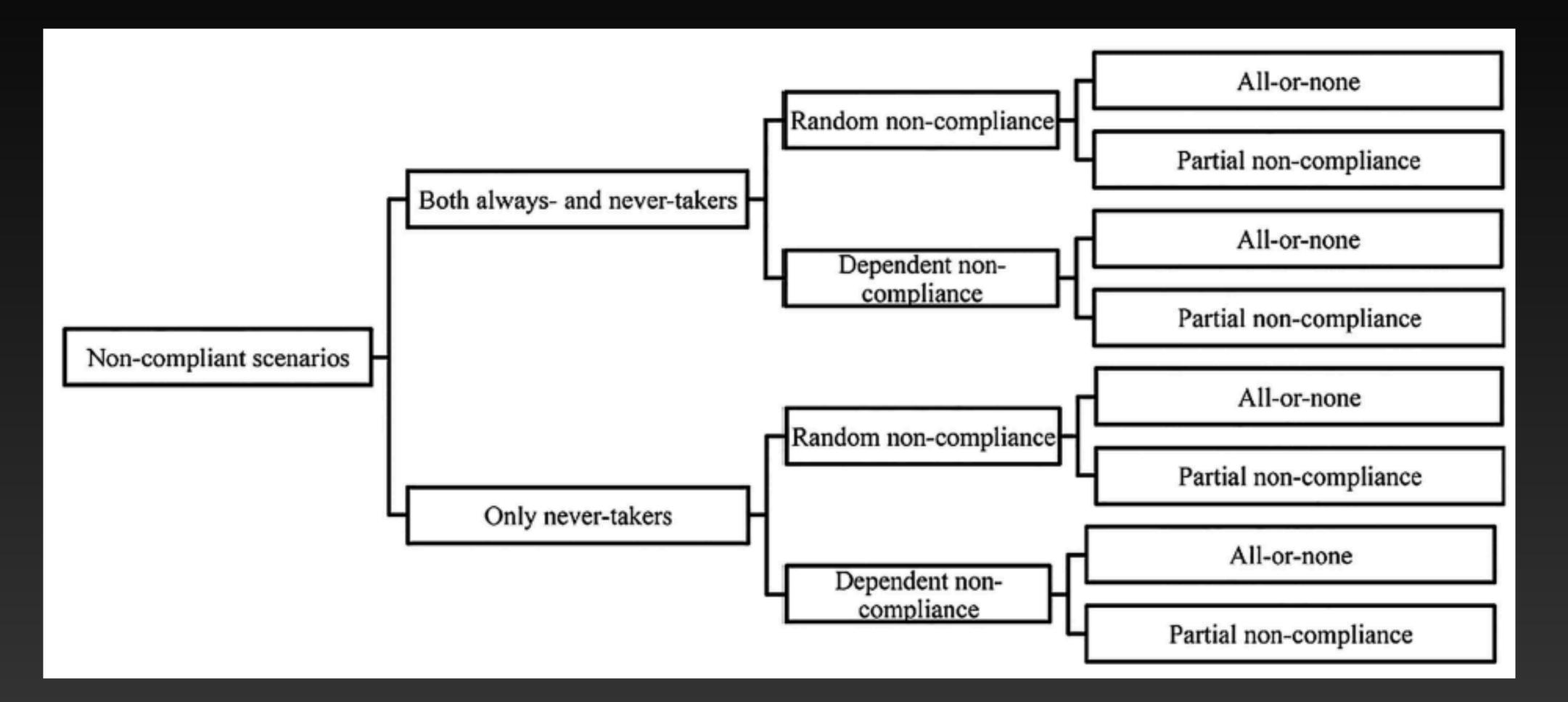
Research

Motivation

- healthcare needs
- high non-compliant rates

• an RCT that compared the integrated care organised through the Children's Treatment Network (CTN) with the usual care directed by parents for managing children with special





Simulation

Type of non-compliers

- either never-takers of always-takers
 - elsewhere even if they were not offered it
- only never-takers
 - who were offered it.

mimicked the situation where patients were able to get the intervention

mimicked the situation where the intervention was only accessible to patients

Randomness of non-compliance

- Random
- Dependent ullet

patients with poor conditions would always reject it; **B.** Patients with good conditions would always get the intervention; patients with poor conditions would always get it; F. Patients with poor conditions would always get the intervention.

- A. Patients with good conditions would always get the intervention while
- C. Patients with poor conditions would always reject the intervention;
- **D.** Patients with good conditions would always reject the intervention while
- E. Patients with good conditions would always reject the intervention;

Degree of non-compliance (according to compliance on components of the intervention)

- All-or-none
 d=0, d=1
- Partial
 - d=0, d=1/3, d=2/3, d=1

Simulation

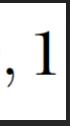
- δ causal effect
 - μ_0 = mean of Y_0 = 59
 - μ_1 = mean of Y_1
 - 89, 74, 59 (50%, 25%, 0% improvement)
- generate individual counterfactual outcome
- define contidion \bullet
 - good $Y_0 > 64$, poor $Y_0 < 54$
- observe outcome for a patients

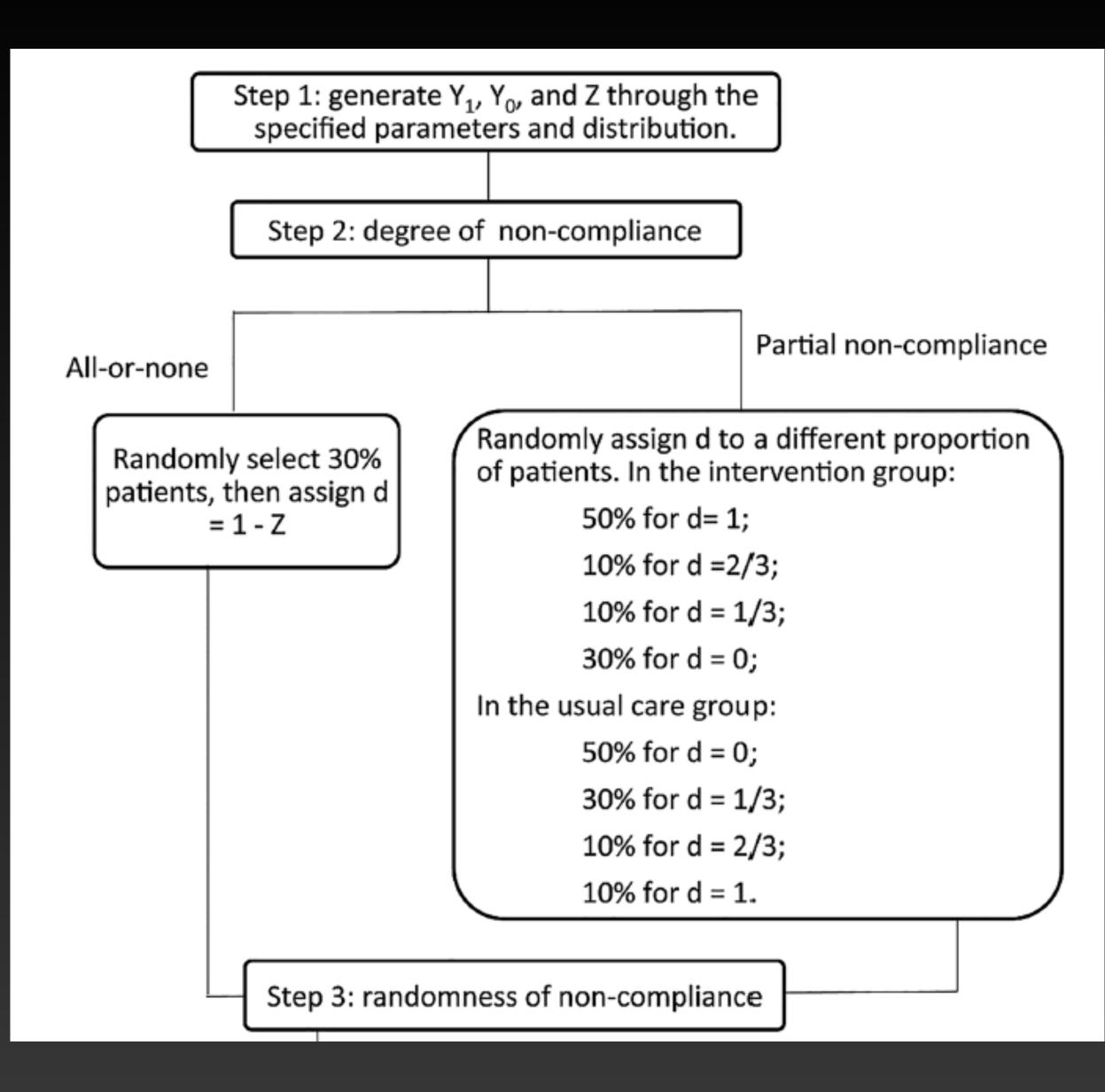
$\delta = \mu_1 - \mu_0$

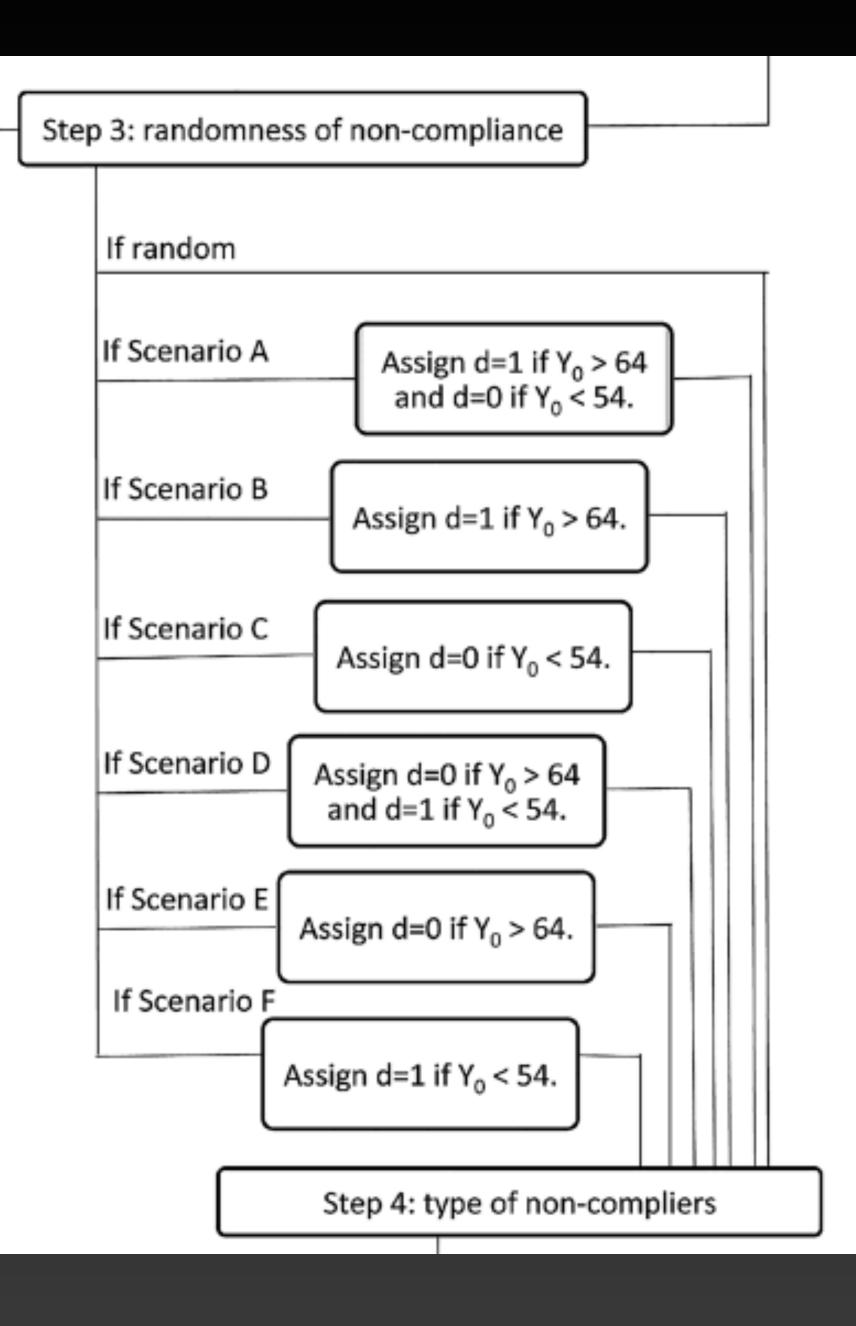
$Y_k \sim Normal(\mu_k, 10^2)$ and k = 0, 1

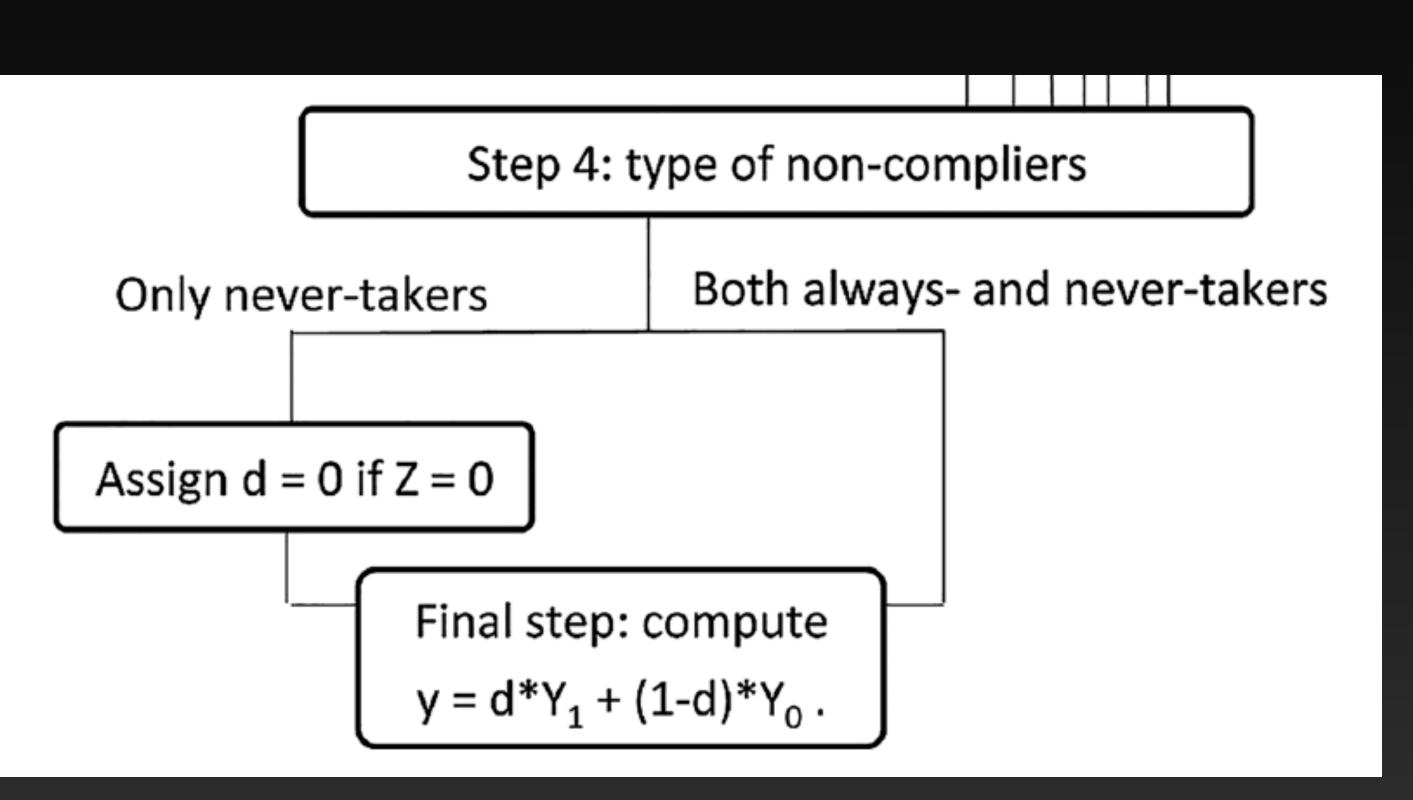
$y_i = d_i Y_1 + (1 - d_i) Y_0$

d_i degree of treatment compliance









Compare: ITT, AS, PP, IV, CACE

- Bias
- Mean square error
- 95% coverage

Analysis

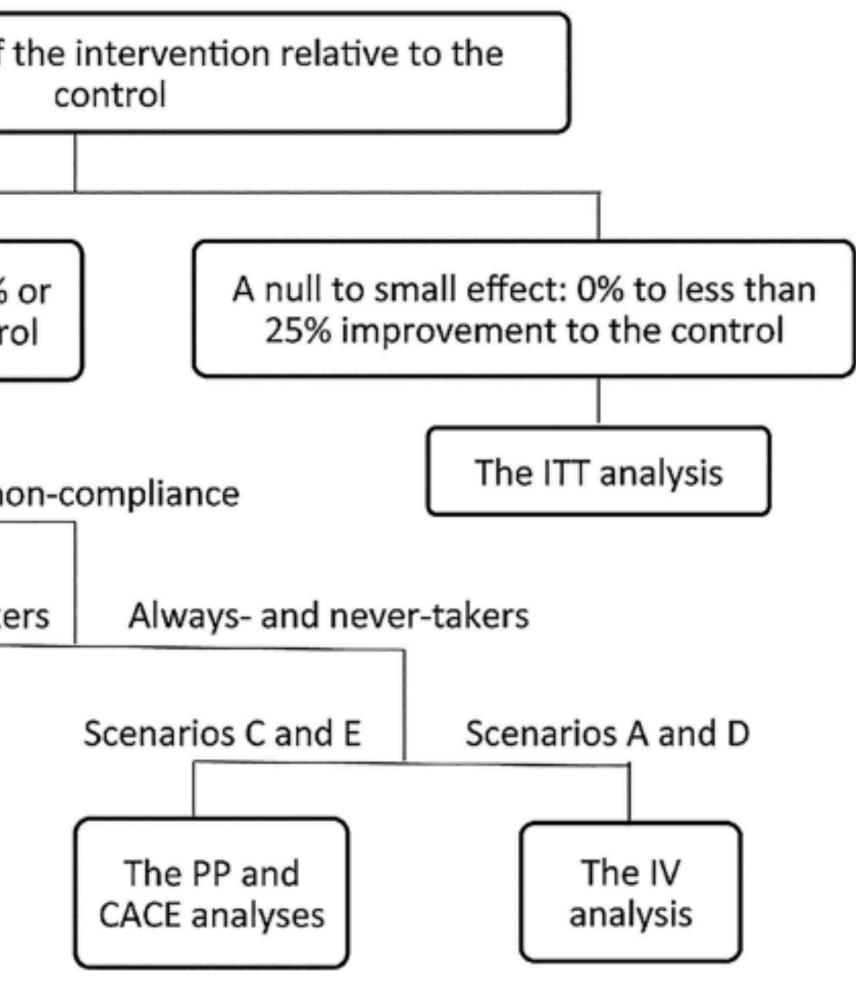
$$Bias = \bar{\delta} - \delta$$

$MSE = (\bar{\delta} - \delta)^2 + (SE(\hat{\delta}))^2$

Kρ	

Exp	ected effect of t
A moderate or larg more improveme	
Random non-compliance	Dependent nor Only never-taker The PP analysis

findings



Limitation

- Did not consider specific prognostic factors
- degree of compliance
- Did not consider missing data
- Only simulate a subset of general non-compliant scenario

• Assumed linear relation between clinical effect of the intervention and the

