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Meta-analysis for the comparison of
two diagnostic tests to a common
gold standard: A generalized linear
mixed model approach

Annika Hoyer and Oliver Kuss

Abstract

Meta-analysis of diagnostic studies is still a rapidly developing area of biostatistical research. Especially, there is an

increasing interest in methods to compare different diagnostic tests to a common gold standard. Restricting to the

case of two diagnostic tests, in these meta-analyses the parameters of interest are the differences of sensitivities and

specificities (with their corresponding confidence intervals) between the two diagnostic tests while accounting for the

various associations across single studies and between the two tests. We propose statistical models with a quadrivariate

response (where sensitivity of test 1, specificity of test 1, sensitivity of test 2, and specificity of test 2 are the four

responses) as a sensible approach to this task. Using a quadrivariate generalized linear mixed model naturally generalizes

the common standard bivariate model of meta-analysis for a single diagnostic test. If information on several thresholds of

the tests is available, the quadrivariate model can be further generalized to yield a comparison of full receiver operating

characteristic (ROC) curves. We illustrate our model by an example where two screening methods for the diagnosis of

type 2 diabetes are compared.
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1 Introduction

Statistical methods for the meta-analysis of diagnostic studies have been a vivid research area in recent years.
Although it is meanwhile accepted that the bivariate logistic regression model with random effects1,2 should be
regarded as the standard approach for such analyses, this model has been extended in several directions. In
response to numerical problems when using maximum likelihood methods for estimation, more robust methods
have been proposed that are guaranteed to give always estimates with confidence intervals.3,4 We proposed to use a
model with beta-binomial marginal distributions that are linked by a copula,5 which results in a closed likelihood
function, thus better convergence, and offers additional flexibility for modelling the correlation between sensitivity
and specificity. Moreover, it has been argued to additionally account for the disease prevalence to arrive at
summary estimates for sensitivity and specificity by using trivariate models.6,7

It is surprising that there exist only a few approaches that allow meta-analysis for the comparison of two
diagnostic tests to a common gold standard. These studies occur more often than expected as it was shown by
Takwoingi et al.8 which found more than 450 systematic reviews which compared the accuracy of two or more
tests until 2013. In line with this, other medical researchers have called for meta-analytic methods to this task. For
example, Tatsioni et al.9 wrote as early as in 2005, that ‘frequently, meta-analyses assess several diagnostic tests for
the same condition. In such cases, we may wish not only to report the performance of each test but also to compare
performance between tests’. Leeflang et al.10 emphasized that ‘policymakers and guideline developers may be
particularly interested in comparative accuracy’ of diagnostic tests. In our research area of diabetes there are
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two systematic reviews11,12 that compare HbA1c and fasting plasma glucose for the population-based screening of
type 2 diabetes mellitus. Both reviews include more than 30 studies, but report results only qualitatively.
Especially, they do not report differences of sensitivities or specificities which are probably the parameters of
highest interest when comparing two diagnostic tests.

Previously proposed methods, however, are not without problems. For example, the method of Siadaty
et al.13,14 confounds the information for sensitivity and specificity and their differences by combining them in a
diagnostic odds ratio, a measure which is rarely used by practitioners. The approach by Trikalinos et al.15 can only
be applied if both individual and aggregated proband data are available. ‘Aggregated’ means here that only
the four-fold tables of both tests are reported. In case of individual data, the fully cross-classified tables of
results across both tests are given. The Diagnostic Test Accuracy Working Group of the Cochrane
Collaboration suggests a meta-regression extension of the bivariate model including a binary covariate for the
tests to compare.16 However, this model does not account for potential correlations between the two tests probably
compromising the statistical properties of the method. Only recently, Dimou et al.17 proposed a model relying on
ideas from multivariate meta-analysis. This model comes with the challenge that data imputation steps have to be
performed for within-proband correlations when studies do not report the full information of the individual
participants.

In the following, a new model is presented which compensates for the disadvantages of earlier approaches.
It computes differences of sensitivities and specificities while accounting for correlations between tests across
studies and heterogeneities across studies. The model is a natural quadrivariate extension of the standard
bivariate model for meta-analysing one diagnostic test. As such it inherits all the well-known and appreciated
properties from this model. Additionally, it is possible to use information from multiple test thresholds if these are
given in the single studies. In Section 2, we introduce the data set that motivated our research. Section 3 introduces
our model and in Section 4 we report the results of a small simulation study that validates the proposed model in
realistic situations. In Section 5, we come back to our data set. Finally, in Section 6, we summarize and discuss our
findings, and point to advantages and drawbacks of the model.

2 Data set

We illustrate our method by two systematic reviews11,12 on population-based screening of type 2 diabetes mellitus.
In principle, three methods are available to diagnose diabetes: the oral glucose tolerance test (OGTT),
measurement of HbA1c, and measurement of fasting plasma glucose (FPG). HbA1c and FPG are less invasive
than the OGTT, where HbA1c has the additional advantage that patients are not requested to refrain from eating
and drinking any liquids other than water before the testing procedure, which is especially important in a screening
setting.

In the two reviews, the single studies use mainly the OGTT as reference standard and compare HbA1c to FPG.
Admittedly, the actual situation is a bit more complicated, and the study-specific reference standards sometimes
also include information from HbA1c or FPG, potentially favouring one of the two tests over the other. However,
we ignore these subtleties here for the sake of the presentation of our method. Just aside, differences between
reference standards were also ignored in the original publications.11,12 Moreover, in both reviews no quantitative
estimates were reported but results were given only narratively.

For a first analysis we use data from Bennett et al.11 and Kodama et al.12 as given in Table 1.
In a second analysis we use the same two systematic reviews, but additionally include all information on the

reported thresholds of HbA1c and FPG from the single studies. This was done because we noticed that a number of
studies reported this additional information and we did not want it to be wasted. To this task, we re-run the search
algorithm from Kodama et al.,12 but found no additional studies. One of us (AH) then read all single studies in full
text and reconstructed the four-fold tables for each reported threshold. As a result, we found that in 38 studies 135
pairs of sensitivity and specificity were given which used 26 different thresholds for HbA1c (ranging from 3.9 to 7.6)
and 27 for FPG (ranging from 3.0 to 7.8). That is, a standard analysis that uses only two single pairs of sensitivity
and specificity from each study would use only 28% of the available observations. The full data set can be found in
the Supporting Web Materials.

It should be noted that ideally the single studies would report individual data on the two diagnostic test results
and the true disease status for each proband. In practice, however, information in this extensive way is rarely
reported. In most cases, systematic reviews of diagnostic test accuracy studies report aggregated data in form of
two four-fold tables as in our example data set. This implicates that in this situation it is not possible to account for
within-proband correlation.
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3 Statistical methods

3.1 Bivariate logistic regression model

As our model is a straightforward extension of the bivariate standard model, we shortly reiterate this model. To
this task, we use the following notation. We assume that each individual study (indexed by i ¼ 1, . . . , I) in the
meta-analysis reports a four-fold table with the number of true positives (TPi), true negatives (TNi), false positives
(FPi), and false negatives (FNi). The sensitivity of the ith study is defined as Sei ¼ TPi=ðTPi þ FNiÞ and the
specificity as Spi ¼ TNi=ðTNi þ FPiÞ. The numbers of true positives and true negatives are assumed to be
binomially distributed:

TPijSei�Binomial ðTPi þ FNi,SeiÞ ð1Þ

TNijSpi�Binomial ðTNi þ FPi,SpiÞ ð2Þ

Table 1. Type 2 diabetes data set: First test: HbA1c, second test: Fasting plasma glucose (FPG).

Studies from Bennett et al.11

and Kodama et al.12 TP1 FN1 FP1 TN1 TP2 FN2 FP2 TN2

Badings et al. 574 262 682 1389 633 203 465 1606

Choi et al. 489 146 1774 6966 445 190 524 8216

Li et al. 36 13 95 998 33 16 120 973

Schöttker et al. 338 29 2376 4060 266 101 1389 5047

Tahrani et al. 16 25 10 147 21 20 25 132

Wang et al. 424 192 121 2112 612 4 1281 952

Hu et al. 644 151 286 1217 648 147 293 1210

Zhang et al. 50 14 4 40 57 7 6 38

Zhou et al. 176 102 768 1286 206 72 823 1231

Kim et al. 72 16 46 258 75 13 35 269

Nakagami et al. 89 26 302 1382 74 41 79 1605

Salmasi et al. 23 7 5 109 16 14 21 93

Glümer et al. 181 71 1988 3877 198 54 721 5144

Anand et al., South Asia 25 2 45 243 24 3 60 228

Anand et al., China 12 2 25 268 12 2 59 234

Anand et al., Europe 13 6 35 260 9 10 40 255

Jesudason et al. 43 11 62 389 40 14 24 427

Tavintharan et al. 17 4 11 79 10 11 2 88

Ko et al. 575 52 1270 980 554 73 469 1781

Papoz et al. 100 12 108 381 77 35 103 386

Choi et al. 610 285 1692 3358 555 340 1667 3383

Heianza et al. 184 154 638 5265 262 76 1418 4485

Law et al. 58 23 129 204 22 59 25 308

Mukai et al. 195 100 718 969 199 96 580 1107

Soulimane et al., Denmark 74 40 1156 3660 80 34 771 4045

Soulimane et al., Australia 145 41 1107 4719 121 65 641 5185

Soulimane et al., France 61 31 742 2950 69 23 876 2816

Cederberg et al. 21 43 36 284 14 50 24 296

Nakagami et al. 42 15 318 814 35 22 198 934

Sato et al. 392 267 1130 5015 541 118 2116 4029

Inoue et al. 187 181 1112 8562 328 40 2411 7263

Inoue et al. 9 8 37 395 15 2 71 361

Norberg et al. 88 76 39 265 82 82 33 271

Takahashi et al. 52 13 37 79 39 26 29 87

Ko et al. 22 22 35 129 19 25 20 144

Mannucci et al. 79 1 689 223 75 5 686 226

Wiener et al. 114 64 20 203 139 39 27 196

Tanaka et al. 135 43 96 592 93 85 0 688
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To model potential across study correlation and heterogeneity of sensitivity and specificity, a generalized linear
mixed model (GLMM) is used

logitðSeiÞ ¼ �þ �i, logitðSpiÞ ¼ �þ  i ð3Þ

with logitð pÞ ¼ logð p=ð1� pÞÞ and random effects �i and  i. The random effects are assumed to follow a bivariate
normal distribution
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That is, �2� and �2 model the heterogeneity (on the logit scale) in sensitivities and specificities across studies, and
� the across study correlation.

As noted in Section 1, the ‘Cochrane’ model16 extends the bivariate model by a single binary covariate for the
tests under comparison, resulting in

logitðSeiÞ ¼ �þ �þ �i, logitðSpiÞ ¼ �þ �þ  i ð5Þ

but again, this model assumes that the two diagnostic tests are independent.

3.2 Quadrivariate logistic regression model

As written before, the quadrivariate model for comparing two tests is an extension of the bivariate model. We now
assume that each study reports two four-fold tables with the number of true positives (TPij), true negatives (TNij),
false positives (FPij), and false negatives (FNij) for the ith study and the jth diagnostic test ( j¼ 1, 2). Note that we
assume that the gold standard is the same for both tests, so that each individual contributes three binary pieces of
information: its result for test 1, its result for test 2, and its true disease status.

Analogous to the bivariate approach, we assume that the true positives and the true negatives of the ith study
and the jth test are binomially distributed, given the sensitivities and the specificities of test j and study i

TPijjSeij�Binomial ðTPij þ FNij,SeijÞ ð6Þ

TNijjSpij�Binomial ðTNij þ FPij,SpijÞ ð7Þ

The corresponding logit transformations are

logitðSeijÞ ¼ �j þ �ij, logitðSpijÞ ¼ �j þ  ij

where logitð pÞ ¼ logð p=ð1� pÞÞ: The random effects ð�i1, i1,�i2, i2Þ
T are now assumed to follow a quadrivariate

normal distribution
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The four variance parameters �2�1 , �
2
 1
, �2�2 , �

2
 2

are used to describe possible between-study heterogeneity of
sensitivities (Se1, Se2) and specificities (Sp1, Sp2). The parameters ��1 1

, ��1�2 , ��1 2
, � 1�2 , � 1 2

, ��2 2
capture the

corresponding correlation among the random effects. Assuming the four correlation parameters ��1�2 , ��1 2
, � 1�2

and � 1 2
to be zero is equivalent to fitting two independent bivariate models for both diagnostic tests separately.

Finally, the differences of sensitivities and specificities as our main parameters of interest are estimated as
follows

�Se ¼
expð�̂1Þ

1þ expð�̂1Þ
�

expð�̂2Þ

1þ expð�̂2Þ
ð9Þ
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for the difference of sensitivities, and analogously for �Sp, the difference of specificities, through replacing the �̂j

by �̂j.
We want to emphasize again that the model as described here only needs aggregated data, that is, two four-fold

tables from the single studies. Admittedly this comes with the restriction that within-proband correlations of test
results are assumed to be zero. However, if such information would be available from the single studies, our model
could be easily generalized by introducing an additional hierarchical level. The resulting, more complex model
would still be a quadrivariate GLMM.

3.3 Accounting for multiple thresholds

Results from diagnostic tests frequently originate from dichotomizing a continuous marker at certain thresholds.
The single studies in a meta-analysis thus might report several four-fold tables, one for each threshold. These
additional information are frequently ignored in meta-analyses and we saw this waste of information also in our
example meta-analysis. However, it is straightforward to include the threshold information as a covariate in our
model (and of course, also in the bivariate standard model) by using

logitðSeijÞ ¼ �j þ Xij�j þ �ij, logitðSpijÞ ¼ �j þ Xij�j þ  ij

where �j and �j are intercepts for logitðSeijÞ and logitðSpijÞ and Xij is a vector containing the threshold values from
each study and each test. The threshold values themselves and also the number of them can differ for every study.
To model the random effects ð�i1, i1,�i2, i2Þ

T, a quadrivariate normal distribution is assumed as before. It should
be noted that accounting for thresholds simply corresponds to a meta-analysis of full receiver operating
characteristic (ROC) curves from the single studies. As such we propose here also a method for the meta-
analysis of differences of ROC curves which can be seen as a simple alternative of existing methods for the
meta-analysis of single ROC curves as proposed by various authors.18–21

4 Simulation

To assess the estimation approaches of our model in realistic situations, a simulation study was conducted. The
simulation programme was written in SAS 9.3 (SAS Institute Inc., Cary, NC, USA).

4.1 Setting

Being inspired by our two example meta-analyses11,12 and another data set from cardiology,22 the following
parameters were varied:

(1) True sensitivities and specificities: The true sensitivity and specificity of test 1 was held constant with 70 and
80%, respectively. The true sensitivity and specificity of test 2 were varied between (65, 70, 80%) and (75, 80,
90%), respectively. Following this, we achieved true differences in sensitivities of �10 percentage points (pp),
0 pp, and 5 pp and true differences in specificities of �10 pp, 0 pp, and 5 pp.

(2) The true association between sensitivities and specificities of both tests: To this task, we assumed the following
three random effect matrices (as in equation (8)), here given as their corresponding correlation matrices

�none ¼

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0
BBB@
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�none assumes that sensitivities and specificities across studies and even between the two tests are completely
independent. For �neg we chose a negative correlation of �0.3 between sensitivity and specificity of each test
because negative correlations are frequently observed and actually expected in reality. The correlation between the
two sensitivities and the two specificities is assumed to be �0.2. The matrix �mix denotes a mixed correlation
structure. Based on �neg we now assume a positive correlation of 0.2 between sensitivities and specificities, because
such positive values for the correlations were seen in our diabetes data set.

We did not vary the true random effect variances �2�1 , �
2
 1
, �2�2 , �

2
 2
, but kept them constant at the value 0.27

on the logit scale. This value was inspired by our previous work and corresponds to a variance of sensitivity
(and specificity) of 0.02 on the [0,1]-scale.

4.2 Data generation

After combining the design parameters we got 27 different simulation scenarios. For each of them, 1000 meta-
analyses were generated. The simulated number of studies within each meta-analysis was uniformly distributed
and varied between 10 and 30. The study sizes were also generated from a uniform distribution and varied between
30 and 200. Finally, the number of diseased persons in each study and for a given study size was also sampled from
a uniform distribution that varied between 0 and the sampled study size. These choices were based on different
meta-analyses reported in practice, for example by Kodama et al.12 or Menke.23 To generate the observed numbers
of true positives and true negatives in the single studies, the VNORMAL call in SAS/IML was used to
create quadrivariate normally distributed random vectors following the specifications for the respective ��.
These random numbers were used to calculate logit-transformed values for the two sensitivities and specificities
with respect to their true values. After this, an expit-transformation led to the values for Se�1, Sp�1, Se�2, and
Sp�2. These were used to generate the final numbers of true positives and true negatives from binomial
distributions.

4.3 Estimation methods

For each of the simulated meta-analyses, 14 parameters have to be estimated for the quadrivariate model. These
are the two sensitivities, the two specificities, and the 10 parameters in the random effects covariance matrix.
Parameter estimation via the maximum likelihood principle in GLMMs is complicated by the fact that integrals
which cannot be solved analytically appear in the likelihood function. Well-established methods that address this
problem and yield exact maximum likelihood estimates are Gaussian quadrature or Markov Chain Monte Carlo.
Approximate methods like penalized quasi-likelihood (PQL) are also available. We restrict here to Gaussian
quadrature and PQL estimation because both methods can be conveniently coded in SAS procedures
NLMIXED and GLIMMIX. The GLIMMIX code is given in the Supporting Web Materials. Actually, with
respect to estimation methods, we compared three implementations:

. PQL using the logit link (PROC GLIMMIX);

. PQL using the identity link (PROC GLIMMIX);

. Gaussian quadrature using the logit link (PROC NLMIXED).

We included a model with an identity link, because in this model the raw difference in sensitivities �̂1 � �̂2

and specificities �̂1 � �̂2 originate directly from the natural parameters. Opposed to this and as seen in equation
(9), for the standard logit link, differences in sensitivities and specificities are non-linear combinations of model
parameters and their confidence intervals have to be computed, with some extra effort, by the multivariate delta
method.

All procedures were run with their default options to ensure a fair comparison between models. Starting values
for the GLIMMIX procedures are automatically generated within the procedure. In case of NLMIXED, where
starting values should be given, we computed them as raw proportions of sensitivities and specificities. The starting
values for the variances and correlations were also generated using the corresponding raw values and appropriate
transformations of them.

As a reference method we also included the model of the Diagnostic Test Accuracy Working Group of the
Cochrane Collaboration, henceforth denoted as the ‘Cochrane’ method. Parameters from this model were
estimated by Gaussian quadrature via the SAS NLMIXED code from Macaskill et al.16 Additionally, we
implemented SAS GLIMMIX code yielding PQL estimates as in the quadrivariate case.
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We emphasize that we only generated data from our quadrivariate model itself. As such, in the simulation we
are only comparing different estimation methods for our proposed model. Especially, we do not aim for a
comparison of our model to the ‘Cochrane’ method.

For comparison of the estimation methods, mean bias and empirical coverage (to the 95% level) were
calculated. Confidence intervals were calculated assuming t-distributions where we used the default numbers of
degrees of freedom from the respective SAS procedure. To address the problem of numerical robustness, we report
the number of converged runs, too.

4.4 Results

Our parameters of interest are the differences between sensitivities and specificities of the two tests. Therefore, in
reporting our results we restrict to them.

Tables 2 to 4 give the simulation results for the situation that is most similar to our diabetes example where the
test with the higher sensitivity has a lower specificity as compared to the other test. However, the description of our
outcomes is based on the complete simulation results which can be found in the Supporting Web Materials.

4.4.1 Bias

In terms of bias all estimation methods performed nearly similar, except in a few situations. Averaging over the
different correlation structures, the overall bias from the model using Gaussian quadrature was slightly higher

Table 3. Empirical coverage (in %) for the 95% confidence intervals for the differences of sensitivity and specificity on the [0, 1]-

scale.

Estimated model

True �Se True
SN SI SL CM CA

and �Sp corr �Se �Sp �Se �Sp �Se �Sp �Se �Sp �Se �Sp

�10%/5% None 94.0 94.3 91.1 94.3 94.2 92.4 66.3 67.8 83.2 84.1

Negative 92.0 91.5 93.3 94.0 93.5 92.9 64.2 62.5 78.0 77.2

Mixed 93.7 94.8 90.5 93.7 91.7 93.0 69.2 68.2 86.6 87.2

5%/�10% None 91.8 94.4 91.6 92.2 93.6 93.3 59.5 73.8 81.3 84.5

Negative 92.9 90.4 94.7 91.2 93.1 92.1 54.3 70.8 72.6 81.2

Mixed 93.8 93.2 88.3 91.0 94.0 95.1 66.6 77.5 88.0 87.8

CA: Cochrane model using the PQL and the logit link; CM: Cochrane model using GQ and the logit link; corr: correlation between Se1, Sp1, Se2, and

Sp2; SI: GLMM using PQL and the identity link; SL: GLMM using PQL and the logit link; SN: GLMM using GQ; �Se: difference of sensitivities;

�Sp: difference of specificities.

Table 2. Bias (multiplied by 100) for the differences of sensitivity and specificity on the [0, 1]- scale.

Estimated model

True �Se True
SN SI SL CM CA

and �Sp corr �Se �Sp �Se �Sp �Se �Sp �Se �Sp �Se �Sp

�10%/5% None �0.22 �0.40 �0.16 �0.14 0.01 �0.14 0.05 �0.16 0.10 �0.22

Negative �0.37 0.38 0.52 �0.16 0.27 �0.01 0.29 0.08 0.17 0.21

Mixed �0.07 0.19 0.48 �0.17 0.20 �0.05 0.26 �0.05 0.24 �0.02

5%/�10% None 0.31 �0.04 0.35 0.22 �0.06 �0.18 �0.03 �0.26 �0.03 �0.26

Negative �0.07 �0.23 0.07 0.15 0.14 �0.22 0.04 �0.43 0.01 �0.44

Mixed �0.06 �0.28 �0.65 0.19 0.06 �0.13 �0.08 �0.18 �0.09 �0.26

CA: Cochrane model using the PQL and the logit link; CM: Cochrane model using GQ and the logit link; corr: correlation between Se1, Sp1, Se2, and

Sp2; SI: GLMM using PQL and the identity link; SL: GLMM using PQL and the logit link; SN: GLMM using GQ; �Se: difference of sensitivities;

�Sp: difference of specificities.
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compared to the other estimation methods. Referring explicitly to the underlying correlation matrices, the
differences of sensitivities and specificities were often overestimated in case of mixed as compared to the none
correlation structures. Comparing the different estimation methods, the most difficult situations, resulting in a
higher bias, were these with negative correlations. This occurred especially for the model using Gaussian
quadrature and the model with the identity link. The quadrivariate model using PQL and the logit link was the
most robust in terms of bias without huge outliers and only small deviations from the true values. Both
implementations of the Cochrane approach led to biased estimates in the same range. The magnitude was a bit
higher as compared to the quadrivariate model using PQL and the logit link.

4.4.2 Coverage

In terms of coverage it is important to note that due to random error, values between 93.6 and 96.4% (95% Wald
confidence interval for a binomial proportion of 950 successes out of 1000 trials) are still compatible with the
hypothesis of a correct coverage.

In case of our quadrivariate models, all estimation methods obtained results near the expected 95%. The best
results were obtained in cases where no correlation is present. Thereby, Gaussian quadrature had a small
advantage over the other quadrivariate models. In case of non-zero correlations, the models using PQL
performed similar and better than the model using Gaussian quadrature. The simulation results showed
obviously that the Cochrane models led to worse results compared to all implemented estimation methods of
the quadrivariate model. That is, our proposed model performs frequently better than the Cochrane approach in
terms of coverage when data were generated from our model.

4.4.3 Convergence

In terms of convergence none of the models reaches 1000 converged runs and worst results were observed in cases
with the negative underlying correlation structure. The models using the logit link and PQL (the Cochrane and the
quadrivariate model) were always superior to the models using Gaussian quadrature and the quadrivariate model
using the identity link was always inferior. This approach seemed to be very fragile in the scenarios where the
specificity of the first test is lower than the specificity of the second test. With respect to convergence, the Cochrane
approach led in most cases to better results than the quadrivariate models. This was expected, as the Cochrane
model is a simpler model including only two random effects.

5 Examples

In this section we return to our example on population-based screening of type 2 diabetes mellitus. As noted
previously, we report two analyses, the first one using the original data from the two systematic reviews, the second
one using the full information from all reported thresholds of HbA1c and FPG.

Table 4. Number of converged runs from 1000 simulation runs.

Estimated model

True �Se True
SN SI SL CM CA

and �Sp corr �Se �Sp �Se �Sp �Se �Sp �Se �Sp �Se �Sp

�10%/5% None 609 609 315 315 845 845 925 925 976 976

Negative 439 439 300 300 757 757 685 685 864 864

Mixed 566 566 317 317 843 843 911 911 974 974

5%/�10% None 550 550 154 154 840 840 916 916 976 976

Negative 408 408 114 114 692 692 674 674 873 873

Mixed 479 479 145 145 811 811 888 888 969 969

CA: Cochrane model using the PQL and the logit link; CM: Cochrane model using GQ and the logit link; corr: correlation between Se1, Sp1, Se2, and

Sp2; SI: GLMM using PQL and the identity link; SL: GLMM using PQL and the logit link; SN: GLMM using GQ; �Se: difference of sensitivities;

�Sp: difference of specificities.
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5.1 First analysis using a single threshold per study

The estimated sensitivities, specificities, and their corresponding differences are shown in Table 5. Using Gaussian
quadrature we found a difference of about 1 pp between the sensitivities of the two tests, favouring HbA1c. The
model using PQL and the logit link finds that FPG has a higher sensitivity than HbA1c, but with a large
uncertainty as can be seen from the wide confidence interval. Both models judge FPG to have a higher
specificity than HbA1c, but again, confidence intervals are wide. We also estimated the correlation matrix of
the random effects. Relying on the estimated correlation matrix of the model using PQL, the situation
corresponds to the mixed correlation structure �mix of the simulation study. In case of the GLMM using
Gaussian quadrature and the logit link, we had to tune the starting values somewhat to achieve a fully
estimated random effects correlation matrix. Nevertheless, based on the satisfying results of that model in this
simulation setting, it seems reasonable to trust also in the GQ results for the example data set. Estimates from the
GQ and the PQL approach are identical, with slightly smaller GQ confidence intervals. Although we have seen in
our simulation that the non-canonical identity link is not necessarily inferior in terms of convergence, the model
with the identity link did not converge for the example data set. In case of the Cochrane approach, the estimated
differences of sensitivities and specificities are somewhat larger compared to the quadrivariate GLMM. In line with
the quadrivariate GLMM using PQL and the logit link, FPG is preferred compared to HbA1c which is indicated
by a higher sensitivity and specificity. Implementing the Cochrane approach using the PQL method leads to
broader confidence intervals as compared to Gaussian quadrature.

5.2 Second analysis using multiple thresholds per study

In the second analysis, we proceed to use the full information on all possible thresholds for comparing HbA1c and
FPG. This is equivalent to perform a meta-analysis on the differences of ROC curves. We used the quadrivariate
GLMM to estimate sensitivities and specificities of HbA1c and FPG with their corresponding 95% confidence
intervals at prespecified thresholds on the respective scale and drew a summary ROC curve for each test. The
results are illustrated in Figure 1 where the two summary ROC curves with corresponding pointwise 95%
confidence intervals and the ROC curves from the single studies are given.

We only use the GLMM with PQL estimation and the logit link, because the simulation has shown that this
model performs best in the one-threshold case, and we expect this estimation method also to work well in the case
of more thresholds. It can be seen that FPG performs better than HbA1c in case of thresholds which are not too
extreme. For high or low thresholds there seems to be no relevant difference in the performance of both tests. At
the threshold of 6.5 which is recommended by the American Diabetes Association24 as well as by the WHO25 for
diagnosing diabetes, FPG performs better in terms of sensitivity when holding constant the specificities of both
test. To be concrete, the estimated sensitivity and specificity of HbA1c at an HbA1c value of 6.5 are 29.4% [20.2%;
40.6%] and 98.7% [98.0%; 99.2%], respectively. At the identical specificity value for FPG, the sensitivity of FPG
is 38.6% [28.2%; 50.2%], which corresponds roughly to a FPG value of 6.7.

Table 5. Results using the different GLMMs.

Model

Sensitivity HbA1c

[95% CI] (in %)

Specificity HbA1c

[95% CI] (in %)

Sensitivity FPG

[95% CI] (in %)

Specificity FPG

[95% CI] (in %)

Difference of

sensitivities

[95% CI] (in pp)

Difference of

specificities

[95% CI] (in pp)

GLMM 72.3 [67.2; 77.4] 80.9 [76.8; 85.1] 73.3 [66.7; 79.9] 84.1 [79.7; 88.5] �1.0 [�7.8; 5.7] �3.1 [�8.1; 1.8]

Gaussian quadrature

(logit link)

GLMM PQL – [–; –] – [–; –] – [–; –] – [–; –] – [–; –] – [–; –]

(identity link)

GLMM PQL 72.1 [66.7; 76.9] 80.8 [76.3; 84.7] 73.1 [66.0; 79.1] 84.0 [79.0; 88.0] �1.0 [�7.8; 5.8] �3.1 [�8.2; 2.0]

(logit link)

Cochrane model 69.6 [64.8; 74.4] 80.4 [76.8; 84.0] 73.6 [69.2; 78.0] 82.2 [78.8; 85.5] �4.1 [�5.5; �2.6] �1.8 [�2.2; �1.3]

Gaussian quadrature

(logit link)

Cochrane model 69.5 [64.4; 74.1] 80.3 [76.4; 83.7] 73.5 [68.8; 77.7] 82.1 [78.4; 85.3] �4.1 [�10.6; 2.5] �1.8 [�6.8; 3.2]

(PQL, logit link)
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The example shows that it is highly beneficial from a clinical viewpoint to explicitly model the information from
different thresholds: Only then sensitivities and specificities can be compared at specific thresholds. In a standard
meta-analysis using only two pairs of sensitivity and specificity from each study and test, only one pair of overall
differences between sensitivities and specificity would have been available, ignoring all information from the
different thresholds.

6 Discussion

In this paper, we propose a new model for the meta-analysis of diagnostic studies that compare two diagnostic
tests to a common gold standard, situations which are not that rare in medical research. Up to now it was not
possible to summarize the results in a meta-analytic way, at least if one was interested in reporting differences in
sensitivity and specificity between the two tests while accounting for potential correlations between tests across
studies and heterogeneities across studies. Our model constitutes a quadrivariate GLMM and is thus just a
straightforward extension of the current bivariate standard model as proposed by Reitsma et al.1 and Chu and
Cole.2 As such, all the well-established statistical theory and software implementations for GLMM with a
multivariate outcome can be used. In a small simulation study we showed that the standard logit link and the
PQL principle for parameter estimation worked well in a variety of realistic scenarios. By simply adding a
covariate to the linear predictor we were able to meta-analyse studies with multiple thresholds corresponding to
the meta-analysis of differences of ROC curves. This is a straightforward alternative to previous methods that
proposed estimation of summary ROC curves while using information from several thresholds, however, for just
one single diagnostic test.18–21

While introducing our model, we proposed to estimate the random effects covariance matrix (8) in its full
unrestricted form. However, this might not always be necessary and restricting variances to the same value or
covariances to zero might result in improved fits. Fits for different matrices could be compared by the BIC and by
the �2 Log Likelihoods (�2LogL) of nested models, however, only if exact maximum likelihood estimates (e.g. by
Gaussian quadrature) are calculated. In case of our diabetes example we achieve the best results in terms of BIC
indeed not for the full model with 14 parameters (BIC¼ 184,286.19), but for a smaller model with 11 parameters
(BIC¼ 184,276.45). It is of interest here that the quadrivariate model which closely approximates the bivariate

Figure 1. Estimated summary ROC curves of HbA1c (black solid line) and FPG (dark-grey solid line) with 95% confidence intervals

(dashed lines) and ROC curves from the 38 single studies.
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Cochrane model in terms of the random effects matrix is judged inferior with respect to the BIC
(BIC¼ 184,283.96).

On the other hand, some limitations of the model should be pointed out. Though the PQL method for
parameter estimation was more robust than Gaussian quadrature, there are still some problems concerning
numerical robustness. This was expected, because the number of estimated parameters is large in the
quadrivariate model, especially as compared to the number of observations, i.e. the numbers of sensitivities and
specificities across studies and tests. Models without random effects like copula-based ones as proposed in our
previous work5,7 could be an alternative. In any case, the ‘Cochrane’ model, which is simpler from a statistical
viewpoint, behaved well in the simulation, especially concerning robustness, and is a good alternative when the
quadrivariate model has convergence problems.

We emphasize again that our model assumes only the two standard aggregated four-fold tables to be available
from each single study. Especially it does not need individual proband data where the three binary outcomes for
each individual (result for tests 1 and 2, and the true disease status) would be explicitly given. We do not consider
this a real limitation of our model, because in our experience individual proband data are rarely accessible. On the
other hand, if such information were actually available we could introduce an additional hierarchical (i.e.
proband) level to adequately adjust for within-proband correlation. The resulting, more complex model would
still be a quadrivariate GLMM.

Thinking further, methods for comparing more than two diagnostic tests while fully accounting for correlations
between tests are definitely needed. For example, in a subsample of larger studies in Takwoingi et al.,8 only one-
third of all studies compared two tests, but two-thirds compared three or more tests. As such, network meta-
analyses of diagnostic tests or multiple-test (not multiple-treatment) comparisons will be a fruitful area in future
research. Only recently, the ‘Cochrane’ model has been extended to the network meta-analysis situation, allowing
comparison of more than two tests by Menten and Lesaffre.26

As a reviewer pointed out, another interesting direction for future work would be to compare the area under
curves (AUCs) between the two tests. In principle it is easy to compute differences of AUCs by estimating ROC
curves for specific values of thresholds and straightforwardly using the trapezoidal rule. Confidence intervals could
be estimated with the multivariate delta rule or a simple non-parametric bootstrap approach.
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