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Abstract

Mendelian randomisation analyses use genetic variants as instrumental variables (IVs) to estimate causal

effects of modifiable risk factors on disease outcomes. Genetic variants typically explain a small

proportion of the variability in risk factors; hence Mendelian randomisation analyses can require large

sample sizes. However, an increasing number of genetic variants have been found to be robustly associated

with disease-related outcomes in genome-wide association studies. Use of multiple instruments can

improve the precision of IV estimates, and also permit examination of underlying IV assumptions. We

discuss the use of multiple genetic variants in Mendelian randomisation analyses with continuous outcome

variables where all relationships are assumed to be linear. We describe possible violations of IV

assumptions, and how multiple instrument analyses can be used to identify them. We present an

example using four adiposity-associated genetic variants as IVs for the causal effect of fat mass on

bone density, using data on 5509 children enrolled in the ALSPAC birth cohort study. We also use

simulation studies to examine the effect of different sets of IVs on precision and bias. When each

instrument independently explains variability in the risk factor, use of multiple instruments increases

the precision of IV estimates. However, inclusion of weak instruments could increase finite sample bias.

Missing data on multiple genetic variants can diminish the available sample size, compared with single

instrument analyses. In simulations with additive genotype-risk factor effects, IV estimates using a weighted

allele score had similar properties to estimates using multiple instruments. Under the correct conditions,

multiple instrument analyses are a promising approach for Mendelian randomisation studies. Further

research is required into multiple imputation methods to address missing data issues in IV estimation.
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1 Introduction

Mendelian randomisation analyses use genetic variants as instrumental variables (IVs) to make causal
inferences about the effect of modifiable risk factors on health- and disease-related outcomes in the
presence of unobserved confounding of the relationship of interest.1–5 Use of Mendelian
randomisation is growing rapidly.4–7 However, using genetic variants as IVs poses statistical
challenges.5,8–11 In particular, there is a need for large sample sizes because of the relatively small
proportion of variation in risk factors typically explained by genetic variants.5,12,13

Recent decreases in genotyping costs and increases in genome-wide association studies (GWAS),
have facilitated discovery of a substantial number of genetic variants associated with risk factors and
disease-related outcomes, such as adiposity14–16 and type 2 diabetes.17–27 Consideration of multiple
instruments for Mendelian randomisation applications is therefore timely due to increasing
availability of suitable variants. In this article we discuss the use of multiple genetic variants as
IVs, both for increasing statistical precision and for testing underlying IV assumptions.

The structure of the article is as follows: we describe instrumental variable assumptions
(Section 1.1) and introduce an illustrative Mendelian randomisation analysis and present separate
IV estimates for four instruments (Section 2). We then discuss the use of multiple instruments to help
address some of the genetic and statistical issues that can affect Mendelian randomisation analyses
(Sections 3 and 4), including the results of simulation studies (Section 5).We return to the example and
simulation to compare IV estimates using multiple instruments and allele scores (Section 6), assess the
impact of missing data (Section 6.2) and discuss the implications of our findings (Section 7).

1.1 Instrumental variable assumptions

An IV (instrument) G is defined as a variable that satisfies the following assumptions:

(1) G is associated with the risk factor (phenotype or intermediate variable) of interest X;
(2) G is independent of the (unobserved) confounding factors U of the association between X and

the outcome Y;
(3) G is independent of outcome Y given X and U.

In the context of Mendelian randomisation, these assumptions can be expressed as: genotype is
associated with the modifiable risk factor of interest (assumption 1); genotype is independent of
unmeasured confounding factors that could bias conventional epidemiological associations between
the risk factor and the outcome (assumption 2); genotype is related to the outcome only via its
association with the risk factor (assumption 3). The second assumption can be justified through
Mendel’s laws when applied to independent heritable units.5,28

If we further assume that intervention on the risk factor only affects the value of the risk factor,
and hence affects the outcome only through this induced change in the risk factor, then the IV
assumptions imply the ‘exclusion restriction’11,29 and its weaker form known as ‘conditional mean
independence’ (used in structural mean models).30 This additional assumption allows causal
inferences to be drawn from IV analyses.

2 Illustrative Mendelian randomisation analysis: single
instrument estimates

Our example investigates the causal effect of fat mass on bone mineral density (BMD) using four
genotypes known to be associated with adiposity from previous GWAS. A previous study found a
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positive effect of fat mass on BMD using SNPs associated with the FTO and MC4R genes as IVs.31

The authors concluded that higher fat mass caused increased accrual of bone mass in childhood.
We consider whether the IV estimates from the separate instruments are of similar magnitude;
whether use of multiple instruments increases the precision of IV estimates; the use of allele
scores as IVs; and the impact of missing data on IV estimates.

2.1 Data

Our example uses data from the Avon Longitudinal Study of Parents and Children (ALSPAC).32

ALSPAC is a longitudinal, population-based birth cohort study that recruited 14 541 pregnant
women resident in Avon, UK, with expected dates of delivery 1 April 1991 to 31 December 1992
(http://www.alspac.bris.ac.uk).32 Out of this 13 988 live born infants survived to at least one year of
age. Children eligible for inclusion in our analysis: (1) had DNA available for genotyping;
(2) attended the research clinic at age 9 and (3) had complete data on height and dual energy
X-ray densitometry (DXA) scan-determined total fat mass and total BMD.

2.2 Selection of genotypes

Eleven adiposity-related SNPs identified in previous GWAS have been genotyped in ALSPAC.
For these analyses we decided a priori to use the four SNPs, namely FTO (rs9939609), MC4R
(rs17782313), TMEM18 (rs6548238) and GNPDA2 (rs10938397), that had the strongest
associations with adiposity in previous studies.14–16 Functional studies are required to ascertain
the specific biological pathways through which these polymorphisms affect adiposity. Whilst most
pathways to greater adiposity are likely to involve influences on diet/appetite or physical activity,
here for the assessment of the IV assumptions (Section 3) we assume that the underlying mechanisms
by which they influence diet or physical activity differ for each of the variants under consideration.
Although current knowledge about their function is limited, their location on different chromosomes
suggests that their influences may indeed be independent.14–16,33,34

The IV assumptions can be uniquely encoded in a directed acyclic graph (DAG).11 The proposed
DAG for our examplar multiple instrument model is shown in Figure 1.

Confounders

Fat mass Bone mineral density

FTO

MC4R

TMEM18

GNPDA2

Figure 1. DAG for a Mendelian randomisation analysis using four genetic variants as instrumental variables for the

effect of fat mass on bone mineral density.
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2.3 Statistical methods

Fat mass and BMD were positively skewed and were log transformed. To account for sex and age
differences in fat mass and BMD, age and sex standardised z-scores of log transformed fat mass and
BMD were used in the analysis. Genotypes were incorporated into IV models assuming an additive
genetic model for the genotypes coded 0, 1 and 2, as shown in Table 1. Height and height-squared
were included as covariates in analyses. We exponentiated parameter estimates to derive ratios of
geometric mean BMD per standard deviation (SD) increase in log fat mass. Analyses were
performed in Stata 11.0.

IV estimation used the two-stage least squares (TSLS) estimator implemented in the user written
Stata command ivreg2.35–37 The Hausman test of endogeneity38 was used to compare the difference
between the ordinary-least-squares (OLS) and TSLS estimates using the user-written Stata
command ivendog.35 (In econometrics a risk factor affected by unmeasured confounding factors,
such that the assumptions of linear regression are violated, is termed an endogenous variable.)
In models including multiple instruments the Sargan test of over-identification (discussed in
Section 4.1), available in the ivreg2 command, was used to test the joint validity of the instruments.39

2.4 Results for separate instruments

Table 1 shows characteristics of the 5 509 eligible children. Of these, 5 091 (92%) had valid genotype
data for FTO, 5,412 (98%) for MC4R, 5,323 (97%) for TMEM18, 5 303 (96%) for GNPDA2 and
4 796 (87%) for all four SNPs. Mean age at the time of the DXA scans was 9.9 years. There was no
strong evidence against the FTO, TMEM18 and GNPDA2 genotypes being in Hardy–Weinberg

Table 1. Study participant characteristics, total eligible children N¼ 5509

N (%)

Mean (SD), geometric mean

(95% CI) or N (%)

HWE p-value

for genotypes

Gender: N(%) Female 5509 (100%) 2713 (49.3%)

Age: Mean (SD) years 5509 (100%) 9.88 (0.32)

BMD: geometric mean (95% CI) g/cm2 5509 (100%) 0.902 (0.900, 0.903)

Fat mass: geometric mean (95% CI) g 5509 (100%) 7209 (7100, 7320)

Height: mean (SD) cm 5509 (100%) 139.6 (6.3)

FTO (rs9939609): 5091 (92%) TT¼ 0: 868 (37%) 0.51

TA¼ 1: 2413 (47%)

AA¼ 2: 810 (16%)

MC4R (rs17782313): 5412 (98%) TT¼ 0: 3115 (58%) 0.04

TC¼ 1: 2017 (37%)

CC¼ 2: 280 (5%)

TMEM18 (rs6548238): 5323 (97%) CC¼ 0: 3705 (70%) 0.57

CT¼ 1: 1465 (28%)

TT¼ 2: 153 (3%)

GNPDA2 (rs10938397): 5303 (96%) AA¼ 0: 1731 (33%) 0.84

AG¼ 1: 2604 (49%)

GG¼ 2: 968 (18%)

HWE: Hardy–Weinberg Equilibrium.
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equilibrium. The MC4R genotypes had an Hardy–Weinberg equilibrium p-value of 0.04 in our
sample, though in the whole ALSPAC cohort the corresponding p-value was 0.1.

Table 2 shows that there is no strong evidence of associations of the FTO, MC4R or GNPDA2
with height, lean mass, mother’s educational achievement and head of household social class.
There is some evidence for these data that TMEM18 is associated with lean mass and mother’s
educational achievement. Under the IV assumptions, TMEM18 genotypes only affect BMD
through fat mass; so for now we view these latter two associations as chance findings similar to
baseline covariates found to be associated with treatment group in a randomised controlled trial
(RCT).

Table 3 shows OLS and IV estimates of the effect of fat mass on BMD in children with complete
data. The OLS estimate of the ratio of geometric means per SD increase in log fat mass (adjusted for
height and height-squared but not other potential confounders) was 1.22 (95% CI: 1.19, 1.26). The
IV estimates of the ratio of geometric means, using each SNP separately, varied between 0.98 (95%
CI 0.47–2.03) for GNPDA2 and 2.33 (1.34–4.05) for MC4R. These four IV estimates generally
suggest that BMD has a positive effect on fat mass, although the lower limit of the confidence
interval for the TMEM18 estimate and both the lower limit of the confidence interval and point
estimate using GNPDA2 as an instrument, were less than 1. For MC4R and TMEM18, there was
evidence that the IV estimate differed from the OLS estimate, based on the Hausman test of
endogeneity (p-values 0.006 and 0.089, respectively), with both suggesting a stronger positive
association than that found in the OLS analysis.

The first stage R2 and F-statistics for the instruments based on the explained variation in
standardised log fat mass show the expected ranking, with FTO genotype explaining the largest
proportion of variation followed by MC4R, TMEM18 and GNPDA2 (these latter two genotypes
explained approximately equal variation). The variation in standardised log fat mass explained by
each SNP was small, ranging from 0.16% to 0.80%, and the TMEM18 and GNPDA2 SNPs were
weak instruments, based on their first-stage F-statistic being less than 10 (Section 4.2). Consistent
with the proportion of variation in fat mass explained by each SNP, the standard error (SE) of
the IV estimate was smallest for the IV estimate using the FTO SNP (0.16) and largest for TMEM18
and GNPDA2 SNPs (0.43 and 0.37). IV estimates using multiple instruments are described in
Section 6.

3 Using multiple instruments to address potential biases in Mendelian
randomisation analyses

Population stratification, linkage disequilibrium and pleiotropy have been identified as factors that
could bias Mendelian randomisation analyses.2,5,11,40 We briefly describe them, and the use of
multiple instruments to address issues they raise.

3.1 Population stratification

Population stratification occurs when a sample is composed of a mixture of populations and so
contains latent ancestral structure. If there are corresponding differences in the prevalence of the
outcome of interest by this structure, then genotype-risk factor associations may result from the
presence of ancestrally informative alleles rather than biological function.41 Some genetic variants
that are potential candidates for use as IVs in Mendelian randomisation studies could have been
influenced by such population stratification.5,42–45 Population stratification therefore has the
potential to bias estimates of causal effects in Mendelian randomisation studies.5
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3.2 Linkage disequilibrium

Linkage disequilibrium (LD) is correlation between allelic states at different loci on a stretch of the
same chromosome when assessed within a population. LD is a function of the frequency of
recombination and is subject to regional genomic characteristics as well as more stochastic
processes which may be influenced by the physical distance between two loci as well as the
relative age of the population in question. Extensive LD can increase the statistical power of a
study to detect genotype-risk factor associations and is exploited in GWAS studies where an
LD-based set of tag SNPs is chosen to maximise the amount of genetic variation captured per
SNP.46,47 SNPs that are associated with phenotypes in GWAS are unlikely to be functional
variants, but rather to be in LD with the unknown functional variant(s).46,47 IV assumptions are
not violated when tag SNPs are used as IVs, providing that they are in LD only with the
functional variant(s).5,11 However, if tag SNPs are also in LD with a variant that affects the
outcome of interest via a pathway that does not include the risk factor of interest the IV
assumptions will be violated.5

3.3 Pleiotropy

Pleiotropy refers to a single gene having multiple biological functions. In the context of Mendelian
randomisation analyses, SNPs in or near genes with pleiotropic effects that directly or indirectly
influence the outcome other than through the risk factor of interest violate the IV assumptions.11

In our example, if any of the adiposity variants had effects on pathways that influence BMD other
than through adiposity, for example, if they influenced calcium or vitamin D metabolism, then IV
assumptions would not hold.

3.4 Use of multiple instruments

Population stratification and pleiotropy can to some extent be dealt with by using ethnically
homogenous study populations, identifying and incorporating population strata in the analysis
and ensuring that the function of the genetic instrument is well understood.5 Comparison of IV
estimates based on multiple genetic variants with independent effects on the risk factor of interest
provides an additional way to identify bias resulting from these issues. If IV estimates from different
variants are similar, it is less plausible that LD or pleiotropy are present.

Comparison of IV estimates from independent genetic variants is analogous to comparing the
results of RCTs of different classes of blood pressure lowering drugs, which lower blood pressure by
different mechanisms. If the effect of the drug on stroke risk in each RCT is proportional to the
direction and magnitude of its effect on blood pressure, this strengthens the evidence for a causal
link between blood pressure and stroke risk, and against the drugs having effects on stroke risk
through other mechanisms. Such consistency would also argue against the possibility that the trials
were affected by methodological flaws that biased their results.

It is possible that separate IV estimates could be identical but biased to a similar extent by
population stratification, because stochastic- or selection-driven non-independence that is not
predicted by LD profiles could influence more than one genetic variant that affects a given risk
factor. Databases such as dbSNP (http://www.ncbi.nlm.nih.gov/projects/SNP/) that provide the
fixation index FST (a measure of population differentiation), or equivalent information, can be
used to examine population stratification.

230 Statistical Methods in Medical Research 21(3)



4 Statistical issues relating to use of multiple instruments in Mendelian
randomisation analyses

4.1 Over-identification

Over-identification refers to the situation when there is more than one instrument for a single risk
factor of interest or, more generally, when there are more instruments than endogenous variables.
In such circumstances testing the ‘over-identification restriction’ checks the joint validity of multiple
instruments by testing whether they give the same estimates when used singly or in linear
combination. There are two commonly used tests of over-identification; the Hansen test and the
Sargan test.39,48 Rejection of an over-identification test is taken to indicate that at least one of the
instruments is not valid (i.e., it does not give the same estimate as the other instruments).49

Verifying that the genotypes are independent of the measured confounding factors (Table 2) is an
indication of the validity of the instruments.50 However, genotypes could still be associated with
unmeasured confounders.

4.2 Finite sample bias and instrument strength

IV estimators such as TSLS are asymptotically unbiased but biased in finite samples, with such bias
inversely proportional to the amount of phenotypic variability explained by the instrument.51 Two
closely related measures of this are the first-stage regression F-statistic and coefficient of
determination R2. It is important to report these. If measured confounders are included then the
partial R2 and F-statistics for the instruments should be reported.52

In Mendelian randomisation the first stage R2 is the proportion of risk factor variability explained
by genotype. The relationship between the F and R2 statistics is given by:

F ¼
R2=k

1� R2ð Þ= n� k� 1ð Þ
: ð1Þ

where k is the number of parameters in the model (in this case instruments). The relative bias of the
TSLS estimator to the OLS estimator is related to the inverse of the F-statistic.53 Hahn and
Hausman gave a simplified version of the relative bias as approximately the inverse of the
F-statistic:54–56

bias TSLS

biasOLS
�

k

nR2
ð2Þ

As R2 increases the relative bias of TSLS decreases, but including additional instruments that do
not increase the first stage R2 increases the relative bias of TSLS. A first stage F-statistic less than 10
is often taken to indicate a weak instrument, although this is not a strict limit but a rule of thumb
drawn from simulation studies.53,57,58 Equation (2) shows that F¼ 10 corresponds to approximately
10% relative bias.54,58 Alternative IV estimators to TSLS may have better finite sample properties
when instruments explain a small proportion of phenotypic variability.59,60

4.3 Statistical power

Genotypic effects on phenotypes are typically small, so Mendelian randomisation analyses can
require very large sample sizes to obtain adequate power.5,13 When multiple instruments are used
in the TSLS estimator, the resulting IV estimate can be viewed as the efficient linear combination of
the separate IV estimates.61 Provided that each instrument is valid, use of multiple instruments will
increase the precision of the IV estimate compared with the separate IV estimates.61 Donald and
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Newey investigated the trade off for multiple instruments where increasing precision can also
increase bias, and suggested using the instruments that minimise an approximate mean squared
error (MSE) criterion.62 Pierce et al. recently estimated the power of Mendelian randomisation
studies in a range of settings, using both single and multiple genetic instruments.13

In studies where genetic data are not obtained from GWAS (in which imputation based on LD is
typically performed) there are typically some missing observations for each genetic variant, due to
failure of genotyping or ambiguous genotype allocation. Missing data typically occur in different
individuals for each variant. They can therefore result in a considerable cumulative reduction in
the number of individuals with complete data on all genotypes, and hence reduce the power of
multiple instrument Mendelian randomisation analyses. One approach to dealing with missing
data is multiple imputation.63 Whilst there has been considerable research into methods of
imputation we are not aware of specific research into appropriate multiple imputation models for
IV estimation.

4.4 Use of an allele score as an instrumental variable

An allele score is a weighted or unweighted sum of the number of ‘risk’ alleles across several
genotypes: weights are usually based on each genotype’s effect on the phenotype. Use of such
scores is becoming more common in gene–disease association studies.64–66 To justify the use of an
allele score the genotypes should have an approximately additive effect on the risk factor. For an
unweighted score they should also have similar per allele effects.

The use of an allele score as a single IV, compared with multiple instruments, will cause the first
stage F-statistic to increase, since the number of parameters in the model is reduced. Therefore, the
relative bias of the TSLS estimator to the OLS estimator will decrease. However, if the weights are
estimated from the same data in which the score is used as an instrument then the single degree of
freedom for the allele score F-statistic may not be appropriate. When using an allele score the IV
estimator is exactly identified, because there is a single instrument and single phenotype, and it is
therefore not possible to use an over-identification test for the joint validity of the SNPs.

In general, using an unweighted allele score will have lower power than the multiple instrument
approach, since the latter will estimate the efficient linear combination of the genotypes.61 Given
appropriate weighting, results from IV analyses using weighted allele scores will be similar to the
multiple instruments approach.

5 Multiple instrument simulations

We investigated the use of multiple instruments through two simulations both based on our
example. Specifically, we investigated bias and precision of IV estimates including: (i) additional
non-weak instruments and (ii) weak instruments.

5.1 Simulation 1: non-weak instruments

Data were simulated as follows, whereG1,G2 and G3 are genotype variables coded additively, X is the
risk factor, Y the disease outcome, U the unmeasured confounder and subscript i denotes a subject:

G1i � Binð2, 0:3Þ, G2i � Binð2, 0:3Þ, G3i � Binð2, 0:3Þ, and,

Ui � Nð0, 1Þ,

Xi ¼ 0:55G1i þ 0:4G2i þ 0:25G3i þUi andYi ¼ �Xi þUi:
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The values of the coefficients on the genotypes were chosen so that G1 explained the most
variability in X, followed by G2 and G3. The value of the causal effect of X on Y, �, was set to 1.
We monitored the estimates of � from the following models:

(1) OLS estimate of the regression of Y on X,
(2) TSLS using G1 as the instrument,
(3) TSLS using G1 and G2 as instruments,
(4) TSLS using G1–G3 as instruments,
(5) TSLS using an unweighted allele score of G1–G3 as an instrument,
(6) TSLS using a weighted allele score of G1–G3 as an instrument.

We used 10 000 replications, each with a sample size of 5 000 observations. Weighted allele scores
were generated by summing each genotype multiplied by its estimated coefficient from the linear
regression of the risk factor on that particular genotype, divided by the sum of weights. We derived
the average bias, MSE, average SE of the IV estimates, coverage, average R2 and F-statistics and
average absolute TSLS/OLS bias ratio (see Equation (2) in Section 4.2). In a further study we
plotted the power curves for models 2–6 for the Wald test of the null hypothesis that �¼ 1. For
this we used 10 000 replications for values of � in the range 0.8–1.2.

5.2 Simulation 1: results

Table 4 shows that the average R2 values for G1, G1 and G2 and G1–G3 were 0.12, 0.19 and 0.22,
respectively. The average SE decreased by 20% with the inclusion of G2 and by a further 6% with
the inclusion of G3.

Models 4 and 6, (multiple instruments using the three genotypes and weighted allele score), had
almost identical properties and had the smallest MSE. Model 3 (multiple instruments using G1 and
G2) had the smallest average bias. The F-statistic was greater for the weighted allele score than for
the three instrument model (1105 vs. 368) despite having the same average R2 statistics. This is
because the instruments were independent and the weights were derived internally so the weighted
score was similar to the linear combination of the instruments derived in the first stage of TSLS.

Figure 2 shows that power increased as the number of instruments increased. The power using the
unweighted allele score was similar to that using G1 and G2 together, while the power using the
weighted allele score was the same as using G1–G3 together.

5.3 Simulation 2: non-weak and weak instruments

Data were simulated with four IVs as follows such that G1 and G2 had F-statistics greater than 10
and G3 and G4 had F-statistics less than 10. The variables were simulated as: G1i�Bin(2,0.4),
G2i�Bin(2,0.2), G3i�Bin(2,0.2), G4i�Bin(2,0.4), and, Ui�N(10,1), Xi¼ 0.1G1i+ 0.1G2i+
0.05G3i+ 0.05G4i+Ui and Yi¼ �Xi+Ui. The value of the causal effect of X on Y, �, was set to
1. We monitored the estimates of � from the following models:

(1) OLS estimate from regression of Y on X;
(2) TSLS estimate using G1 as the IV;
(3) TSLS estimate using G1 and G2 as the IVs;
(4) TSLS estimate using G1, G2, G3 and G4 as the IVs;
(5) TSLS estimate using an unweighted allele score of G1 and G2 as the IV;

Palmer et al. 233



T
a
b

le
4
.

Si
m

u
la

ti
o
n

1
(n

o
n
-w

e
ak

in
st

ru
m

e
n
ts

):
re

su
lt
s

(M
o
n
te

C
ar

lo
st

an
d
ar

d
e
rr

o
r

re
p
o
rt

e
d

in
b
ra

ck
e
ts

b
e
si

d
e

e
ac

h
e
st

im
at

e
)

M
o
d
e
l

A
ve

ra
ge

b
ia

s
M

SE
A

ve
ra

ge
SE

C
o
ve

ra
ge

A
ve

ra
ge

R
2

A
ve

ra
ge

F

A
ve

ra
ge

ab
so

lu
te

T
SL

S/
O

L
S

b
ia

s
ra

ti
o

1
.
O

L
S

0
.8

1
9
4

(0
.0

0
0
0
5
)

0
.6

7
1
4

(0
.0

0
0
0
9
)

0
.0

0
5
4

(7
E
–
7
)

0
N

A
N

A
N

A

2
.
T

SL
S

G
1

�
0
.0

0
1
9

(0
.0

0
0
4
)

0
.0

0
1
6

(0
.0

0
0
0
2
)

0
.0

3
9
9
1

(0
.0

0
0
0
3
)

0
.9

5
2
3

(0
.0

0
2
1
)

0
.1

1
6
3

(0
.0

0
0
1
)

5
8
1
.4

1
(0

.5
0
4
)

0
.0

0
2
2

(0
.0

0
0
5
)

3
.
T

SL
S

G
1

&
G

2
�

0
.0

0
0
0
4

(0
.0

0
0
3
)

0
.0

0
1
0

(0
.0

0
0
0
2
)

0
.0

3
2
1
5

(0
.0

0
0
0
2
)

0
.9

4
6
7

(0
.0

0
2
2
)

0
.1

8
9
8

(0
.0

0
0
1
)

4
7
4
.0

9
(0

.3
3
3
)

0
.0

0
0
1

(0
.0

0
0
4
)

4
.
T

SL
S

G
1
–
G

3
0
.0

0
0
8
4

(0
.0

0
0
3
)

0
.0

0
0
9

(0
.0

0
0
0
1
)

0
.0

3
0
1

(0
.0

0
0
0
2
)

0
.9

4
8
7

(0
.0

0
2
2
)

0
.2

2
1
2

(0
.0

0
0
1
)

3
6
8
.4

1
(0

.2
4
3
)

0
.0

0
1
2

(0
.0

0
0
4
)

5
.
T

SL
S

al
le

le

sc
o
re

G
1
–
G

3

�
0
.0

0
0
9
8

(0
.0

0
0
3
)

0
.0

0
1
0

(0
.0

0
0
0
2
)

0
.0

3
1
6

(0
.0

0
0
0
2
)

0
.9

4
8
6

(0
.0

0
2
2
)

0
.1

9
8
1

(0
.0

0
0
1
)

9
9
0
.2

2
(0

.6
8
5
)

0
.0

0
1
0

(0
.0

0
0
4
)

6
.
T

SL
S

w
e
ig

h
te

d

al
le

le
sc

o
re

G
1
–
G

3

0
.0

0
0
8
4

(0
.0

0
0
3
)

0
.0

0
0
9

(0
.0

0
0
0
1
)

0
.0

3
0
1

(0
.0

0
0
0
2
)

0
.9

4
9
2

(0
.0

0
2
2
)

0
.2

2
1
2

(0
.0

0
0
1
)

1
1
0
5
.4

3
(0

.7
3
0
)

0
.0

0
1
2

(0
.0

0
0
4
)

M
SE

:
m

e
an

sq
u
ar

e
d

e
rr

o
r,

SE
:
st

an
d
ar

d
e
rr

o
r,

T
SL

S:
tw

o
-s

ta
ge

le
as

t
sq

u
ar

e
s,

O
L
S:

o
rd

in
ar

y
le

as
t

sq
u
ar

e
s.

234 Statistical Methods in Medical Research 21(3)



(6) TSLS estimate using a weighted allele score of G1 and G2 as the IV;
(7) TSLS estimate using an unweighted allele score of G1–G4 as the IV;
(8) TSLS estimate using a weighted allele score of G1–G4 as the IV.

We used 10 000 replications, each with a sample size of 5 000 observations. We also plotted power
curves for testing � in the range 0 to 2 (again using 10 000 replications for each value of �).

5.4 Simulation 2: results

Table 5 shows that models 3 and 6, using the two non-weak IVs as multiple instruments and just
these two in a weighted allele score, had the smallest bias. However, models 4 and 8, using all four
genotypes as multiple instruments and all four in the weighted allele score, had the smallest MSE
and near identical properties to one another, the only difference being that the average F-statistic is
larger for the weighted allele score due to its smaller model degrees of freedom. Figure 3 shows that
models 4 and 8 also had similar power curves and the largest power of the models considered here.
These power curves are asymmetric because the distribution of the estimates was negatively skewed
in these simulations.

6 Example revisited: multiple instrument estimates and assessment of
missing data

6.1 Multiple instrument estimates

The lower half of Table 3 presents IV estimates using two, three and four genotypes and the
unweighted and weighted allele scores. The estimated ratios of geometric means were similar,
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β

Models: 2 3 4 5 6

Models: 2. TSLS G1, 3. TSLS G1 G2, 4. TSLS G1–G3, 5. Score G1 G3, 6. Weighted score G1 G3

Figure 2. Simulation 1 (non-weak instruments): power curves.
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between 1.63 and 1.73, except for the estimate using the unweighted allele score (1.40). Consistent
with the simulation studies, the smallest SEs were for the IV estimates using four SNPs and the
weighted allele score. For each multiple instrument model, the Sargan over-identification test
provides little evidence against the joint validity of the instruments. The Hausman tests suggest
that the IV estimates using multiple instruments differ from the OLS estimate.

The SE of the IV estimate using all four SNPs was 0.12, approximately 20% smaller than that of
the IV estimate using FTO alone (0.16). As expected, given their low first-stage F-statistics, inclusion
of the TMEM18 and GNPDA2 SNPs led only to a small decrease in the SE compared with the
multiple instrument model using FTO and MC4R (0.12 compared with 0.14). The IV estimate using
all four SNPs had the largest first stage R2 and smallest SE.

6.2 Assessment of missing data

Table 6 shows IV estimates using the maximum available number of children for each analysis,
instead of restricting to children with complete data on all 4 genotypes as in Table 3. Because the
sample size increased by only 10–20% for each SNP the SEs of the IV estimates were only slightly
smaller than those based on children with complete data. The SE of the IV estimate using all four
genotypes as multiple instruments in Table 3 (0.12) was smaller than the SEs of the IV estimates
using all available data using one, two and three instruments in Table 6.

7 Discussion and conclusion

Mendelian randomisation studies using genetic variants as instruments can control for unmeasured
confounding and reverse causation, which can bias results from standard epidemiological analyses.
However, population stratification, LD and pleiotropy can all affect the validity of the IV
assumptions underlying Mendelian randomisation analyses. Obtaining similar IV estimates from
separate independent instruments provides evidence against the presence of bias from pleiotropy and
LD, though not bias from population stratification. In our example there was no evidence that the
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estimates for each instrument differed from each other (based on the over-identification test),
providing some reassurance that bias from pleiotropy and LD is unlikely. However, we
acknowledge in this example our power to detect differences between the estimates was limited.

Mendelian randomisation analyses require large sample sizes unless the instrument is strongly
related to the risk factor (phenotype) of interest. Use of multiple genetic variants as IVs increases the
power of such analyses and facilitate tests of the IV assumptions that are not possible in single
instrument analyses (such as the test of over-identification). However, inclusion of instruments that
explain only a small proportion of the variability in the phenotype can increase finite sample bias of
IV estimates. We have limited our consideration to the linear IV model. Non-linear models that
naturally arise for discrete outcomes require different treatment.11

Our illustrative Mendelian randomisation analysis confirmed a positive causal effect of adiposity
(fat mass) on BMD, in line with previous research 31 and suggested that the size of this effect was
larger than that estimated by ignoring unmeasured confounding and using ordinary least squares,
based on the Hausman endogeneity test. The SE of the IV estimate decreased by around 20% using
all four genotypes, compared with the SE of the IV estimate using only the genotype with the
strongest effect on risk factor. Such a reduction in SE corresponds to a 56% increase in sample size.

With increasing availability of multiple genetic variants associated with the same risk factor or
disease outcome, it is becoming common for genetic association studies to report associations with
allele scores.64,65 Before an allele score is used as an IV the joint validity of the SNPs should be
assessed using an over-identification test. The weights used in weighted allele scores may be internal
or external to the study: when internally estimated the single degree of freedom used in the F-statistic
for instrument strength may not be appropriate. In their simulations Pierce et al. 13 used external
weights based on the true effect of the genotypes on the phenotype: such weights should be taken
from the overall available evidence. They concluded that unweighted and weighted allele scores,
using these external weights, decreased bias when compared to the traditional multiple instruments
approach, but that they had less power than the multiple instruments approach. In our simulations,
models including all instruments, either as multiple instruments or in a weighted allele score, had the
greatest power and lowest MSE but not the smallest bias. Based on these results the use of allele
scores as IVs can represent a good trade off in terms of lower bias but possibly less precision
compared to the TSLS estimator. It has been shown that for larger numbers of IVs, with
differing effect sizes, it is better to use a weighted allele score.13

Another consequence of the large number of genetic variants that are being indentified in
GWAS in relation to particular phenotypes is that it is possible to generate many independent
combinations of such variants and from these many independent IV estimates of the causal effect
of a risk factor on a disease outcome. These independent estimates will not be plausibly influenced
by any common pleiotropy or LD-induced confounding, and therefore if they display consistency
would provide strong evidence against the notion that reintroduced confounding is generating the
effect.67,68

There are typically missing data on each genetic variant, due to failure of genotyping or
ambiguous genotype allocation. Thus in multiple instrument analyses, missing genotype data can
offset improvements in power compared with single instrument analyses. It may be reasonable to
assume that the mechanism causing genetic data to be missing is independent of a particular analysis
of interest, so this may not be a cause of bias. There is scope for methodological research into
multiple imputation strategies for IV estimators. It might also be possible to impute missing data for
single SNPs by exploiting the LD structure between SNPs in LD with them, as is common in
GWAS.69 In the ALSPAC study, maternal genotypes are available, which could also be used to
impute missing offspring genotypes.
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In conclusion, the use of multiple genetic instruments increases the statistical power of Mendelian
randomisation analyses and provides opportunities to test IV assumptions.
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