JOURNAL CLUB
18-5-2017

Presenter: Dr Philip Bassey



INSTRUMENTAL VARIABLES II:
IV APPLICATION FOR "PPP"
AND GENETIC STUDIES g%

PIDEMIOLOGY
AND
IOSTATISTICS

PHILIP ETABEE MACDONALD BASSEY




AVA

RESOURCE MATERIALS

Instrumental variables I: instrumental variables
exploit natural variation in non-experimental data
to estimate causal relationships

Preference based IV methods for the estimation of treatment
effects: Assessing Validity & Interpreting Results

Instrumental variables Il: instrumental variable
application—in 25 variations, the physician
prescribing preference generally was strong and
reduced covariate imbalance

Using multiple genetic variants as instrumental
variables for modifiable risk factors



Outline of Presentation
3 Parts Presentation

1. Overview of instrumental variable(s) (IVs) —
Natural variations-Covered by the first paper

2. Application of Instrumental variables in
health services research —(The PPP Concept) —
Covered in the second/third papers

3. Application of Instrumental variables in
genetic studies- Covered in the fourth paper
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Introduction:

e Observational studies struggle with potential
for bias from confounding by indication and
other unmeasured risk factors

 The gold standard of study design for
treatment evaluation is widely acknowledged
to be the randomized controlled trial (RCT).

* The classic experimental method of
establishing causality is to intervene in one
group while leaving a second control group
aside



Introduction:

 For decades, economists have been using
instrumental variable (V) analysis as a method of
causal inference in cases where an RCT is not
possible and when an assumption of no
unmeasured confounding is unwarranted.

e This article Instrumental Variable -1 outlines the
theoretical framework, analytical method and
the assumptions required for IV analysis



What is as instrumental variable (1V)?

" |t is an unconfounded proxy for a study exposure
that can be used to estimate a causal effect in the
presence of unmeasured confounding.

* |nthe many cases where RCTs are impractical or
unethical, instrumental variable (1V) analysis offers
a nonexperimental alternative based on many of
the same principles of RCTs.

" Instrumental variable (IV) analysis provides a
method to obtain a potentially unbiased estimate of
treatment effect, even in the presence of strong
unmeasured confounding



Criteria for Instrumental Variables (IVs)

1. Z(IV) is associated/ Competing risks(U)

causally related with
X

3. Z does not share common
causes with the outcome(Y) -
there is on confounding of

through X effectof ZonY

2. Z affects Y (outcome) only

Risk Factor/

Exposure
Etc. (X)




Assumptions of Instrumental variable

An IV (instrument) Zis
defined as a variable that
satisfies the following
assumptions:

the exposure / risk factor of
interest / intermediate
variable

U
(1) Z (1V) is associated with X /
X

(2) Z affects the outcome Y e 7 ——
only through X. [No direct
effect of G on Y] —Exclusion
restriction.

(3) Zis independent of the
(unobserved) confounding
factors U of the association
between X and the
outcomeY;



1aipe i

Kev points about I'V analvsis

An instrumental variable is a vanable in nonexperimental data that can be
thought 1o mimic the coin toss 1in a randomized trial.

I an appropnate and valid instrument 15 found, then the ellfects of
measured and unmeasured confounding can be mitigated.

An IV analysis always has an experimental analog, howewver absurd the
experiment sounds, The IV analvsis 15 therefore based on “a natural
experimment.”

Assumption (1) The I'V must predict treatment but that prediction does not
have to be perfect, An IV that does a poor job of prediction 18 said 1o be
weak.

Assumption {2): A wvalid TV wiall not be directly related to outcome, except
through the effect of the treatment,

Accsgumption {3 A valid IV will also not be related to outcome through
cither measured or unmeasured paths.

In a randomized tnal, the assumptions are met by design in the act of
randomization. In an IV analvysis, these assumptions must be emparically
checked 1o the extent possible or assumed based on context and subjyect
matier knowledge.

In cases of treatment—effect homogeneity, I'V studies estimate the effect on
the marginal subject, the average treatment effect for patients whose
lreatment was deterrmined by the mmstrument | 14].




Vs, or instruments, in randomized experiments

For atypical trial

— Zis the randomization assignment indicator (eg, 1= treatment,
O=placebo),

— Xis the actual treatment received (1 = treatment, 0= placebo),
— Y is the outcome, and

— U represents all factors (some unmeasured) that affect both the
outcome and the decision to adhere to the assigned treatment.

U




Theory: Comparison between RCT and IV analysis

RCT v
 Three categories of e Also Three categories of
participants: Compliers; subjects Compliers;
Noncompliers, Defiers Noncompliers, Defiers

e “Compliers” - marginal
subjects whose treatment
status is determined by the
status of the instrument

e Compliers randomly
distributed in each of the arms
provide the statistical

information that will (proxi_mity/access _tO care}
determine the effect measure provide information about
of the study the effect of treatment, as

they are the ones whose
exposure was directly

* In RCTs Blinding removes the affected by the instrument.

possibility of defiance



Theory: Comparison between RCT and IV analysis

RCT

Independence and exclusion
should be met by design.

In randomized trials, the
independence assumption and
exclusion restriction are
fundamentally unverifiable.

Indeed, many of the problems
with RCTs, such as poor
randomization leading to
treatment group imbalance, are
empirical violations of
independence or exclusion

The ITT analysis provides an
estimate of the treatment effect
among the “compliers”

IV

In IV designs independence &
exclusion can be met using IV
analysis

In IV settings the independence
assumption and exclusion
restriction are also
fundamentally unverifiable

The exclusion restriction can be
violated by the existence of
common causes of both the
instrument and the outcome,
and is met only by assumption.

IV analysis provides estimate of
the effect of Rx among the
marginal subjects (compliers).
This estimate is scaled to a
figure that reflects the effect of
treatment had everyone in the
population been marginal.



Theory: Comparison between RCT and IV analysis

IV Assumptions:

1. Z has a causal effect on X

2. Z affects Y only through

3.

X { EXCLUSION
RESTRICTION}

Z does not share
common causes with the
outcome Y

RCT Compliance

Condition is met in RCT-
trial participants are
more likely to be Rx if
they were assigned to Rx

This is ensured by effective
double blindness

This condition is ensured by

the random assignment
of Z



Distance to Specialty Provider as |V

McClellan, M., B. McNeil and J. Newhouse, JAMA, 1994,

"Does More Intensive Treatment of Acute Myocardial Infarction Reduce
Mortality?”

Medicare claims data identify admissions for AMI, 1987-91

Treatment: Cardiac catheterization (marker for aggressive care)

Outcome: Survival to 1 day, 30 days, 90 days, etc.

Instrument: Indicator of whether the hospital nearest to a patient’s
residence does catheterizations.



lllustration : The differential difference hypothesis
The study by McClellan et al

Study context: An observation that some hospitals
provide catheterization, whereas others do not (or do so
only infrequently)

Hypothesized that the patient's differential distance from
catheterization-providing hospital may be a determinant
of Rx ..

That the paramedic was more likely to go to the nearer
hospital rather than select a farther one based on the
availability of particular facilities

Therefore, all things equal, patients living within short
differential distances to catheterization-providing
hospitals would be more likely to receive catheterization
solely as a result of their proximity.



Table 2a

Association between catheterization (X) and death (D) (crude exposure to outcome association: RD = 0.150)

Catheterization (X+) Mo catheterization (X—)  Total

Died (D+) 1000 25 125
Did not die () 40M) 475 ]
Taotal 500 S00) 1,000

Abbreviarion: RID, risk difference.

Table 2b

Association between closeness to catheterization facility (£) and death (D) (instrument to outcome association
assuming quasi-randomization: RID = —0.100)

Small DI, Dist. to Large Diff. Dvist.

Cath. facility {F+) to Cath. facility (£—)
Died (D+) i 119 125
Did not die (=) 144 73l 875
Taotal 150 250 1,000

Abbreviation: I, Dist.: differential distance; Cath., cathetenzation.

Table 2c

Association between closeness to catheterization facility (£) and catheterization (X) (strength of instrument and
amount of compliance: RD = (.494)

Small Diff. Large Diff.
Dyist. to Cath. Dyist. to Cath.
facility (&) facility (Z£—)

Catheterization (X)) 138 362 500
Mo catheterization (A=) 12 488 S0

Total 150 KA0 1,000




Analyzing the data: causal effect of the IV on the marginal
subject illustrated with the study by McClellan et al.

Based on the example of distance as a proxy for catheterization,
the data from Table 2a (crude RD = 0.150) was reanalyzed by
using “short differential distance” in place of “received
catheterization” and “long differential distance” in place of
“didn't receive catheterization” (Table 2b;  RD =-0.100)

Then the confounding effect of selection for catheterization and
death was “supposedly ” removed by the quasi-randomized
treatment arising from the natural variation in the place where
patients live.

Therefore the analysis was moved from the treatment-based
estimate to the IV-based estimate thereby switching the
direction of the effect estimate.

However the estimate of differential distance on catheterization
may be muted because there might be a significant number of
nonmarginal patients, patients for whom distance was not the
factor that determined their treatment (Table 2c; RD = 0.494).



https://www.sciencedirect.com/science/article/pii/S0895435609000146
https://www.sciencedirect.com/science/article/pii/S0895435609000146
https://www.sciencedirect.com/science/article/pii/S0895435609000146

The simple calculation of the IV estimate on the RD scale 15 as follows:

RD Instrument—Outcome assoclation

Instrument strength

Dhstance—Death as=sociation

PDlistance—Catheterization association

::I-.I-lflul-:,II —0.202

The numerator in the fraction is the IV-to-outcome relationship, and will
ranges from -1 to 1; in a randomized study, the numerator is simply the ITT
estimate.

The denominator is the scaling factor that accounts for compliance. A strong
instrument will yield a rescaling factor toward +1, whereas a weak
instrument will be closer to zero.

Importantly, if any of the assumptions have been violated, scaling may
magnify any bias from residual unmeasured confounding that is factored into

the numerator

This fraction called Wald estimator, is useful for the most basic IV estimates.



INTENTION TO TREAT (ITT) & WALD IV ESTIMATOR

ITT Estimator = E[Y|Z=1] - E[Y|Z=0]

E[Y|Z=1] - E[Y|Z=0]
I/ Estimator = -
E[X|Z=1] - E[X|Z=0]

Effect of the Instrument on the Outcome
WALD IV

=S TIMATOR Effect of the Instrument on the Exposure



J Clin Epidemiol. 2009 December ; 62(12): 1233-1241. dor:10. 1016/ clmep. J008. 12,006,

Instrumental variables II: instrumental variable application=in 25
variations, the physician prescribing preference generally was

strong and reduced covariate imbalance
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Over view of the paper:

* Provides a link with the first paper -
Instrumental Variable-1

 Explores the alternative definitions of the
physician prescribing preferences (PPP)
proposed by Brookhart et al. and related work
by other authors.

* Discusses possible analytic frameworks of Vs



Study Context

Physician prescribing preference (PPP) has been used as
an instrumental variable in clinical epidemiology

They created 25 different PPP study algorithms from the
IV instrument that was proposed by Brookhart et al.
both in terms of making series of variations in the study
design and cohort selection.

For each variation, they assessed the IV's strength and
the reduction in imbalance resulting from the application
of the IV.

They compared reductions in imbalance across the
variations and assessed the overall relationship between
strength and imbalance.

BEFORE PROCEEDING, LET US BRIEFLY EXAMINE THE
BROOKHART CONCEPTS OF IVs



The International Journal of
Biostatistics

Volume 3. Issue 1 2007 Article 14

Preference-Based Instrumental Variable
Methods for the Estimation of Treatment
Effects: Assessing Validity and Interpreting
Results

M. Alan Brookhart, Division of Pharmacoepidemiology,
Brigham and Women's Hospital & Harvard Medical School
Sebastian Schneeweiss, Division of Pharmacoepidemiology,
Brigham and Women's Hospital & Harvard Medical School



Overview of the study by Brookhart et al.

They reviewed the use of Observational studies of
prescription medications / medical interventions based
on administrative data for clinical decision making.

They queried the validity of such studies - because the
data may not contain measurements of important
prognostic variables that guide treatment decisions.

Variables that are typically unavailable in administrative
databases include lab values (e.g., serum cholesterol
levels), clinical data (e.g., weight, blood pressure),
aspects of lifestyle (e.g., smoking status, eating habits),
and measures of cognitive and physical functioning.

The threat of unmeasured confounding is thought to be
particularly high in studies of intended effects because

of the strong correlation between treatment choice and
disease risk (Walker, 1996).



Study by Brookhart et al.

* The goal of Brookhart et al was to compare the effect of
prescribing 2 classes of drugs (cyclooxygenase 2-[COX-2]
selective and nonselective nonsteroidal antiinflammatory
drugs [NSAIDs]) on gastrointestinal bleeding.

* The authors propose the “physician’s prescribing
preference” for drug class as the instrument, arguing that it
meets conditions (i), (ii), and (iii).

* Because the proposed instrument is unmeasured, the
authors replace it in their main analysis by the (measured)
surrogate instrument “last prescription issued by the
physician before current prescription.”



Study by Brookhart et al.

Observational Study of Non-steroidal Anti-Inflammatory Drugs
and Gl bleeding risk in an elderly population
(Brookhart et al, Epidemiology 2006)

* Compare short-term risk of Gl outcomes between
— Non-selective NSAIDs

— COX-2 se
* Coxibs are s
* Coxibs are li

ective NSAIDs
ightly less likely to cause GI problems

kely to be selectively prescribed to

patients at increased Gl risk
* Classic problem of confounding by indication



lididULlTlIolILo Ul CUTNIUIL L

Variable Coxib NS NSAID
Female Gender 86% 81%
Age =75 75% 65%
Charlson Score=>1 6% 1%
History of Hospitalization 31% 26%
History of Warfann Use 13% %
History of Peptic Ulcer Disease 4% 2%
History of Gl Bleeding 2% 1%
Concomitant Gl drug use 2% 4%
History Gl drug use 27% 20%
History of Rheumatoid Arthritis 2% 3%
History of Osteoarthitis 49% 33%




Patient’s Gl Risk

Low Moderate High

“Marginal Patient”

NS NSAID COXIB COXIB

» NS NSAID NS NSAID COXIB

NS NSAID Preferring Physician



Estimating preference:

Treatment Treatment = ?

Index Patient's |V is _

E—z Previous Patient’'s Treatment '{Gr?j

AL

fd

Previous Patient Index Patient
Treated with NSAIDs

Time




Instrument should be unrelated to

observed patient risk factors

Variable Coxib Pref NS NSAID Pref
Z=1 Z=0
Female Gender 84% 84%
Age =175 3% 72%
Charlson Score = 1 2% 3%
History of Hospitalization 29% 2%
History of Warfanin Use 12% 10%
History of Peptic Ulcer Disease 3% 3%
History of Gl Bleeding 1% 1%
Concomitant Gl drug use 2% 2%
History Gl drug use (e.g., PPIs) 25% 24%
History of Rheumatoid Arthritis 4% 4%
History of Osteoarthritis 45% 41%




Instrument should be related to treatment

Last Current Prescription
NGAID (Actual Treatment)
Prescriptior Coxib Non-Selective NSAID

(V) X=1 X=0

Coxip (13%) 21%)
L=1

Non-Selective NSAID (50%) (50%)

Z=)




With that brief background- We can
proceed to Instrumental Variable 11
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Instrumental variables II: instrumental variable application=—in 25
variations, the physician prescribing preference generally was

strong and reduced covariate imbalance
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RECALL :

 Brookhart et al. had proposed that an individual
physician's preference for prescribing one drug over
another is an IV that predicts which drug a patient will
oe treated with.

* From the examination of physician prescribing
natterns they deduced that the variation they
observed may be an instrument under the

assumption that PPP is unrelated to outcome.

 The preference at the time of seeing the patient was
determined by the treatment a doctor chose for the
previous patient who was treated in his or her
practice and who also required a new prescription for
one of the study drugs




Overview of the Paper-Key Points of Instrumental
Variable-11

 The instrumental variable here is the Physician
Prescribing Preference (PPP)

 Emphasis on reliable and consistent estimates
of effect

* Achieving IV validity by reducing covariate
imbalance

e Study was therefore aimed at exploring ways
of achieving covariate balance and the
improving the strength of the instrument



Obijective of the study- To:

"= Examine the covariate bdlance and instrument
strength in 25 formulations of the PPP IV in two
cohort studies.

" Explore variations in the simple definition of PPP
by changing the PPP algorithm through the
application of restriction and stratification schemes

" Evaluate each variation based on the IV strength
and reduction in imbalance.



Study Design

Application of the PPP IV to assess antipsychotic
medication (APM) use and subsequent death within
180 days among two cohorts of elderly patients in two
different locations.

Method /Modalities

(i) They varied the measurement of the PPP
(ii) Performed cohort restriction and stratification.

(iii) Modeled risk differences with two-stage least
square regression

(iv) Assessed the balance of the covariates using the
Mahalanobis distance



Varying the IV Tool

Even though the use of the previous patient's
treatment to estimate preference has the
advantage of quickly registering any changes in
preference, two issues arise:

(i) The previous patient's treatment may not
reflect the doctor's true preference

(i) The simple IV as specified may not possess
the required strength and validity.



1. Varying the measurement of the PPP IV Tool

Note that Brookhart et al. had proposed the simple
technique for measuring a physician's preference which
Rassen et al. termed the “base case”.

The “base case” is considered to be the reference
cohort that are on the existent treatment preferences /
regimens

Base cohort : had no restrictions and physician's
previous prescription was used as instrument
[Reference group]

In all instances, they chose single, dichotomous Vs for
interpretability and comparability.



Steps in varying the study design and physician
prescribing preference formulation

4

Rassen et al. desighed variations on the “base case’
that were meant to exercise the definition of the
PPP measure and to create contrasts in strength
and validity by modeling:

(1) preference assignment algorithm

(2) source population

(3) stratification criteria



Method- Variation of -study design Cont’d

They also expanded the time window to calculate
preference from more than just the last new
prescription filled.

They used the previous two, three, and four new

prescriptions, and set different targets for prescribing
consistency

E.g. in the case of four prescriptions, they considered
that “any of the four,” “half of the four,” and “all of the
four” were conventional rather than atypical APMs.

They hypothesized that expanding the window would
increase balance in treatment groups by creating a
oetter, more stable estimate of true underlying
oreference and therefore better quasi-randomization of
natients to two predicted treatment groups (arms)




Methods-Cont’d

Base Case:

Base cohort with no restrictions
and physician's previous
prescription as instrument

1. Preference assignment
algorithm changes

1A. Lenient criteria

e P1: Atleast 1 conventional APM
Rx within last 2 Rx's

e P2: Atleast 1 conventional APM
Rx within last 3 Rx's

e P3:Atleast 1 conventional APM
Rx within last 4 Rx's

1.B. Strict criteria

e P4:2 conventional APM Rx's
within last 2 Rx's

e P5:3 conventional APM rx's
within last 3 rx's

e P6:4 conventional APM rx's
within last 4 rx's

1.C. Moderate criteria

e P7:Atleast 2 conventional APM
rx's within last 3 rx's

e P8: At least 2 conventional APM
rx's within last 4 rx's

2. Cohort restrictions

e 2.A. Cohort restriction based on
doctor characteristics

e R1: Doctor has a very high-
volume practice

e R2:Doctor has a high-volume
practice

e R3: Doctor has a low-volume
practice

e R4: Doctor sees many older
patients



Methods-Cont’d

R5 : Doctor sees many younger
patients

R6 : Doctor is a primary care
physician

R7: Doctor is a specialist

R8: Doctor graduated before 1980
(PA®)

R9: Doctor graduated after 1980
(PALR):

2.B. Cohort restriction based on
patient characteristics

e R10: Patient above median
patient age

e R11:Patient below median patient
age

e R12: Patient in the middle
quartiles of age

2.C. Cohort restriction based on

patient and doctor
characteristics

R13: Patient is older than the
median age in the doctor's
practice

Stratification changes

S1: Last patient was in the same
age category

S2: Last patient was also above/
below the median patient age

S3: Last patient was also above/
below the median patient age
within doctor's practice

S4: Last patient was in the same
quartile of propensity score


https://www.sciencedirect.com/science/article/pii/S0895435609000134
https://www.sciencedirect.com/science/article/pii/S0895435609000134

lllustrated example-context

They performed an example study of initiation of APM
therapy and the associated risk of short-term mortality.

APMs are categorized into two groups: conventional
(older) and atypical (newer) agents

They are widely used off-label to control behavioral
disturbances in demented elderly patients.

Previous studies have found increased rates of death
among users of atypical antipsychotic agents as
compared with placebo

Nonrandomized studies have indicated that both types
of APMs increase risk of death in the elderly, with the
atypical drugs showing lesser risk than the
conventional ones



Study Population & Setting:

Two cohorts of patients aged 65 years and
older who initiated APM treatment.

The first cohort was drawn from Pennsylvania
(PA)'s Pharmaceutical Assistance Contract for the
Elderly (PACE), a drug assistance program for the
state's low-income seniors, between 1994 and
2003.

The second cohort was drawn from all British
Columbia (BC) residents aged 65 years or more
between 1996 and 2004.

Patients with existing cancer diagnoses were
excluded



Drug exposures, study outcomes, and measured
patient characteristics

They defined the exposed group to be initiators of
conventional APM treatment and compared them
with a referent group of initiators of atypical APM
therapy

Outcome was defined as death within 180 days
from drug initiation.

The baseline characteristics of the patients was
defined based on the 6 months before each
subject's index date and included coexisting
illInesses and use of health care services

All dates were measured to the level of day; events
occurring on the same day were ordered randomly.



Statistical models:

e Two-stage least squares (2SLS) models were
used to estimate risk differences

e All IV models were run in Stata Version 9
using the ivreg2 module

 They applied the robust function to estimate
the standard errors to account for clustering
within physician practices using the sandwich
estimator



How to Estimate the Effect of Treatment Using an IV

* |V analysis is typically done using a 2-stage least-squares estimation.

* In order to assess the strength of an instrument, an F test can be used in
first-stage regression which predicts treatment as a function of the
instrument and covariates.

* The F test is used to test the hypothesis that al is significantly different
from 0 .

* An F statistic =10 is often used as a ‘rule of thumb’ to indicate that an
instrument is not weak , but this may not be the case if multiple
instruments are available.

* Anpartial r2 (the square of the correlation hetween the instrument and the
treatment adjusted for other covariates) can also be used to assess the
proportion_of the variance explained by the addition of the IV to the

regression model. A large partial r2 is an indication that the instrument
makes a large contribution to the prediction of treatment .




Description of the Two-5tage Least-Squares

Regression
Stage I1:regression: 1T; = op + ans; + vy (1)
where T; = treatment:; Z£; = I'V; v; = error term for treatment

a; +=0; Z; and T; can be either continuous or binary (can also
adjust for measured confounders).

Stage 2: regression: Y; = G + El'f"+ € (2)
where T = @iy + & Z; Y: = outcome; T; = estimated treatment ef-
fect; g; = error term for outcome (can also adjust for measured
confounders).

Substituting equation 1 into equation 2:
=%+ it &

where
Yo= Po+ Tbo y1= b &= Givy + e

In order to estimate the direct treatment effect (3,) of treat-
ment { ;) on outcome (Y;), we need to use theinformation from
equations 1 and 2:

B1 = ¥1/d.



In the first stage, a regression estimate (‘al ) is obtained by
regressing treatment (T) on the IV (Z) in equation 1 (can also
adjust for relevant measured confounders).

In the second stage, the predicted value of the treatment (T') is
used in a regression of the outcome (Y) on treatment (T") (can
once again adjust for relevant measured confounders) to obtain an
estimate "Y1 = f1°/al inequation 2.

This 2-stage approach eliminates the bias that would have occurred
in a conventional regression of outcome on actual treatment
received using our observational data.

The estimated direct treatment effect ( B1 ) is calculated as the ratio
of "Y1/ al.



Dichotomous Outcomes and Relative Measures of Effect

e The simple Wald estimator and the linear structural
equation models can be used with dichotomous outcomes.

 The linear structural models require the use of appropriate
software to conduct inference, correctly specified models,
and the predicted values of exposure in the 0-1 range.

e However, in medicine and epidemiology interest often
focuses on ratio measures such as relative risks or rates. IV
approaches based on the Wald estimator or linear structural
equation models yield estimates of an absolute measure of
effect (e.g., a risk difference).

e Avariety of IV approaches can be used to estimate relative
measures of effect, and each imposes somewhat different
assumptions.



IV Estimation Using Stata

let outcome be the outcome,

exp be the exposure,

iv be the instrument,

age be a continuous age variable,

sex be an indicator for male sex (1=male, 0O=female),

and c1, cZ, and c3 be three dichotomous
confounders.



simple crude and adjusted models
using ordinary least squares (OLS) estimation
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simple ivreg of exposure, instrument, and outcome

*  The bold line shows the desired point estimates: an absolute risk difference of -1.2 per 100
people, with a 95% confidence interval of -0.5 to -1.9 per 100. Adding the IV has moved the
point estimate toward the null, but increased the standard error by a factor of three.

Socurce 58 df MS Number of obs = 63053
-------------------------------------------- F( 1, 6308%]) = 12..32
Model 1.9715631 1 1.9715631 Prob > F = {0,0C004
Bes:idual 241 .48864 63051 .019690229 R=sguared = (.0016
ittt L T Adj R=sguared = (.0016
Total 1243.£602 63052 .019721186 Boot MESE = 14032
outcoma Coef Std. Err. E P> |t 05& Conf. Interva

s " " " " " " — " — " — " — ———— — — =

exp | =.0122035 .0034773 -3.51 0.000 -.015019 -.005388
C 3 0.000

cons 0220232 0007775 28.32 il 0204883 0235472



simple model with age, sex, and three major covariates adjusted

In this case, adjusting for covariates made little difference: the point estimate
changed from -1.2 per 100 to -1.5 per 100.

ivreg ocutcome (exp = iv) age zex cl c2 cj3

Instrumental wvariables (25L3) regression

Source == E S Number of obzs = 23052
............................................ F{ &, 53045) = 154,85
Modm]l 20.53205854 6 3.486 426 Prob = T = 0.0000
Rezidual 1222 .53921 63045 019331533 A=zgquared = J.0L&8
———————————————————————————————————————————— Adj R=sguared = Q0.0L&7
Total 1243.45498 63051 0197214492 Boot MSE - 13925
outcomms Coaf Std. Errx = B>t 5% Conf nterva
axp | -.0154683 0034772 -4 .45 0.000 -. 0222835 -, 0086531
age 0012849 0000465 27 .42 0. 0006 00114631 0013768
EEex - 0083853 LL012283 =-4.38 0.000 = 0077528 -, 0029779
=1 = 01234498 L014531 =5.53 0.000 - 01524748 -, 0095518
o2 nO2082 DO258587 0.81 0.421 =_(02G98& L0071 s
c3 -. 0041458 $01263¢ -3 .32 0.00L - 006673 -, 0017187
cong -_ 0478727 6032737 =14 62 0. 000 - _ 05428482 - 0414581
Instrumented: exp
Instruments age zex cl c2 c3 iv



TABLE 2

Characteristics of adults 65 years and older in British Columbia and Pennsylvania stratified by type of APM
received

British Columbia Pennsylvania

Characteristic

Atvpical treatment Conventional treatment  Atypical treatment Conventional treatment
Number of new drug starts 23,785 12,756 12,031 8,056
Age (mean) B0.32 79,89 B35 B350
Male (%) 35.1 39.7 15.1 20.1
Cardiac arrhythimia (%) 0.1 .0 1.4 1.4
Cerebrovascular disease (%) 9.9 1.8 30.2 28.3
Congestive heart failure (%) 6.0 B4 30.4 31.8
Hypertension (%) 24.1 22.3 64.2 57.2
Diabetes (%) 13.8 15.0 26.3 255
Myocardial infarction (%) 23 2.7 33 34
Other ischemic heart diseazse (%) 2.7 1.8 238 283
Other cardiovascular disorders (%) 16.6 0.2 57.7 554
Dementia (%) 12.6 9.7 19.0 T8
Dreliviwm (9%) B.4 7.4 15.2 11.7
Mood disorders (%) 25.3 15.6 35.5 21.8
Psychotic disorders (%) 16.7 11.2 24.4 21.7
Other psychiatric disorders (%) 4.3 31 7.9 5.7
Nursing home residence in previous 180 days (%) 26.8 3l.0 20.2 15.5

Number of drugs used (mean) 7.34 7.36 T.R2 6H.65




Table 3. Comparison of Risk Ditferance Models in 3 Cohorts of Patients, Pennsylvania (1994-2003) and British
Columbia, Canada (1996-2004)°

Exposurs; COX-2 Inhibitor Conventional AP Conventional APM
Referant: Nonselective NSAID Atypical APM Atyplcal APM
Severe Gastrointestinal
Outcome: Complications Death Death
Population: Pennsylvania Pennsylvania British Columbia
RD x 100 95% CI RD x 100 95% CI RD % 100  95% CI
Crude OL5 model 019 =0.03. 0.41 .69 1.85, 3.73 4.48 3.89, 5.23
Adjusted OLS model =0.07  =0.30,0.18 3.81 2.68, 5.13 3.55 2.74, 4.37
2-slage least squares model” =128 =258, 0.01 /.69 1.28, 14.12 400 094,706
Logistic'OLS madel™~ -1.36 =208, <0.15 /.64 1.55,13.74 4,54 1.B0, 7.88
J-slage model =135 =253 =017 753 183, 1324 4 76 181, 7.72
Crude probit marginal 0.19 =003, 0.41 .69 1.68, 3.70 4.46 3.69, 5.23
affects® model
Adjusted Gpn::-l:ﬁi'r marginal =005  =0.26, 017 3.51 2.32, 4.69 320 242, 397
effects” model
IV-based prabit marginal -141 =3.14,032 894 1641624 388  0.67.7.08
effects™ model~~




Table 4

Difference m rsk of all-cause mortality within 180 days of mitiation of conventional versus atypical APM treatment.

Eventsin -~ Events in
canventianal APM P,'I]-'pii:'ﬂ] APM

Papulation and variation group  group Unadjusted OLS estimate  Age/sereadjusted OLS estimate  Fully adjusted OLS astimate™ IV analysls estimate
Biitish Columbia

ase case [umresrited) 186 230 446(168,52) 49075,52) 155174, 43 400 (094, 706)

Restneted to PCPs (RA) NES b 4.24{341, 5.06) 44K (168, 5.28) LAR(ZT0 4.48) LIT{HLET 679)

Petiisylvania

Base case (unrestricted) 1307 164 169(1.65,3T3) 147(1 46, 3.49) 190 (268 5.13) T (126, 14.12)

Restricted to PCPs (R6) B0 1,129 L7371 229 (0,98, 3.60) A7 550 53153, 1421

NOTE, Thi vilues withun brackets are 9% confidence intervals. Risk differeaces are exprossed pee 100 patieuts,
Abbreviatians: APM, anfipsychotic medication, LS, ordinary least squares; IV, instrumental variabl; PP, primary care physician.

3 Adjusted for age, sex, race, vear of treatment, and bistory of disbeles, arrhylhima, cerebrovascular isease, myocandtal farction, congestive heart fullure byplertension, other tschemic heart dsease, oher

candiovaseular disordess, dementia, delisium, mood disordess, psyeholic disoedess, other peychiatric disorders, antdepressant use, pussig hom residence, and bospiialization,



Table 5

Charactenstics of the first-stage mstrumental vanable regression model for each study vanaton

British Columhbia Fennsylvanin
First=tlage models Firsimgiape models
Flrsimaiage Firstasiage
Unadj. IV to Ad]. IV 1o partial & Partial # value Unadj. IV to Adj. 1V to partal £
Study varintion N frestment (R frestment ORT  statistic? study varintion N trestment OR trestment ORY stutistic® Pariinl r value®
Rase case 1,976 6,13 1LED Q09 n.O7s 13,130 660 129 478 0,054
L1 24,085 668 19K 613 0.0 #5770 36 ER L FALL LR
B2 T4 637 186 Bl4 0.074 9198 744 3350 $39 0,055
R3 223 397 L.66 T8 01.042 LRI 181 153 0,038
R RIS 6dd 1EE TSh 0,074 9024 764 56 M5 0,057
Pl A0 4,44 FA-E e a1 ally 505 2.0 L3k 0y
R 17382 563 137 T .062 Ball A5 310 428 0.048
RT 4461 ETD 517 L] .05 4184 708 562 175 0,062
15 —_ —_ —_ —_ —_ 6,538 676 351 425 0,061
R — — — — — G148 a9 310 308 0048
R10 16,774 651 4,00 589 0.078 5432 45l 359 343 0.060
R11 12,365 471 LA L] 347 0058 5256 543 281 14 0,035
112 14914 591 R0 531 0.07% 5561 A2 355 2 0,054
R13 12585 600 1490 | 074 4.14%  a27 363 153 0058
51 InM2 470 3.1l 448 (L0335 7092 520 293 i 0,040
52 5,043 333 372 43 0,042 0488 274 2.8 287 0,026
53 2BSRY 104 2.6 421 (RNIS 94808 2466 226 4 0.025
&4 39T 613 180 Y [.075 13,131 &57 327 T4 0054
PL(RI} 4085 673 410 S81 0,072 4577 RA2 348 X4 0.045
PR 24085 636 401 478 0,057 £577  1.R9 L1E | 36 0,028
'3 (K1) 2085 671 4.10 450 0.04% #5717 1467 A9 L2 (LD

P4 (RI) 4085 TA7 441 07 (.07 4577 T0h im i .0



Result & Conclusion

Results:

e Partial r’ ranged from 0.028 to 0.099. PPP
generally alleviated imbalances in nonpsychiatry-
related patient characteristics, and the overall
imbalance was reduced by an average of 36%
(£40%) over the two cohorts.

Conclusion:

* |n the study setting, most of the 25 formulations
of the PPP IV were strong IVs and resulted in a
strong reduction of imbalance in many variations.

 The association between strength and imbalance
was mixed.
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Criteria for Instrumental Variables (IVs)

Competing risks
1. Association between

instrument and factor

3. No direct association

2. No association between between instrument and
instrument and competing risk outcome

Modifiable

risk Factor




Mendelian randomization as an instrumental variables
approach

Genotype
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Refresh Genetics 101 (Basic concepts of genetics)

Mendel’s principles (laws) of inheritance
1. the principle of segregation
2. the principle of independent assortment
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Overview-What is Mendelian randomization?

e Mendelian randomization technique (MRT) -the
use of DNA (genetic) variants as instrumental
variables to make epidemiological causal
inferences about the effect of modifiable factors
on health and disease-related outcomes in the
presence of unobserved confounding of the
relationship of interest in observational data.

e Mendelian randomization is “instrumental
variable” analysis using genetic instruments”



Principles of Mendelian randomization?

e MRT is based on the principle that if a DNA variant is
known to directly affect an intermediate phenotype.

 The phenotype could be a variant in the promoter of a
gene encoding a biomarker that affects its expression

e |f intermediate phenotype truly contributes to the
disease, then the DNA variant should be said to be
associated with the disease to the extent predicted by:

(1) the size of the effect of the variant on the phenotype
(2) the size of the effect of the phenotype on the disease



Application of Mendelian randomization?

e Use of Mendelian randomization is growing
rapidly.

e However, using genetic variants as IVs poses
statistical challenges.

e Particularly, there is a need for large sample sizes
because of the relatively small proportion of
variation in risk factors typically explained by
genetic variants



Mendelian randomization and randomized controlled

trial designs compared

Mendelian
Randomization

\

Random Segregation

of Alleles
Exposed: Control:
One Allele Other Allele
Confounders Equal
Between Groups
L3 L

Randomized
Controlled Trial

|

Randomization Method
Exposed: Control:
Intervention Mo Intervention

Confounders Equal
Between Groups

L

Outcomes Compared Between Groups

Qutcomes Compared Between Groups




Key points of Mendelian Randomization?

e The MR study design can be likened to a
prospective randomized clinical trial in that
the randomization for each individual occurs
at the moment of conception

e At conception—genotypes of DNA variants are
randomly “assigned” to gametes during
meiosis, a process that should be impervious
to the typical confounders observed in
observational epidemiological studies.



Key points of Mendelian randomization-cont’d

e Genetic variants are ideal candidates for IVs,
as genes are typically specific in function and
ideally affect a single risk factor

 Genetic variation is determined at
conception, so no reverse causation of an
outcome on a genetic variant is possible.

* Genetic markers used as IVs are usually single
nucleotide polymorphisms (SNPs)



Structure of the article by Palmer et al.

Section 1: Description of the instrumental variable
assumptions and introduction of an illustrative
Mendelian randomisztion analysis with the presentation
of separate IV estimates for four instruments

Section 2: Discussion of the use of multiple instruments
to help address some of the genetic and statistical issues
that can affect Mendelian randomisation analyses

Sections 3 and 4: Results of the simulation studies

Section 5: Comparison of the IV estimates using multiple
instruments and allele scores

Section 6: Assessment of the impact of missing data

Section 7: Discussion of the implications of the findings.



lllustrative Example of MRT:

e [llustration of Mendelian randomization using an
example of four adiposity-associated genetic
variants as IVs for the causal effect of fat mass on
bone density, based on data of 5509 children
enrolled in the ALSPAC birth cohort study



STUDY SETTING

Avon Longitudinal Study of Parents and Children - Children of the 90s -

The Avon Longitudinal 5tudy of Parents and Children (ALSPAC), also
known as Children of the 90s, is a world-leading birth cohort study,
charting the health of 14,500 families in the Bristol area.




Sectionl: Instrumental variable assumptions

An IV (instrument) Z -
genotype is defined as a
variable that satisfies the
following assumptions:

risk factor (phenotype or
intermediate variable) of
interest X;

U
(1) Itis associated with the /
X

(2)It affects the outcome Y e 7 ——
only through X. [No direct
effect of Z on Y] —Exclusion
restriction.

(3) It is independent of the
(unobserved) confounding
factors U of the association
between X and the
outcome Y



Section2: lllustrative Mendelian randomisation analysis:

Single instrument estimates

* |nvestigation of the causal effect of fat mass on
bone mineral density (BMD) using four
genotypes known to be associated with
adiposity from previous GWAS.

e A previous study using SNPs associated with the
FTO and MC4R genes as IVs. found a positive
effect of fat mass on BMD

 The authors concluded that higher fat mass
caused increased accrual of bone mass in

childhood.



Section2: lllustrative Mendelian randomisation analysis:

Single instrument estimates , Cont’d

Current study is therefore to consider:

a) whether the IV estimates from the separate
instruments are of similar magnitude;

b) whether use of multiple instruments increases
the precision of IV estimates;

c) the use of allele scores as 1Vs; and
d) the impact of missing data on IV estimates



2.1. Data

 The illustrative example used data from the Avon
Longitudinal Study of Parents and Children (ALSPAC).

 ALSPAC is a longitudinal, population-based birth cohort
study that recruited 14 541 pregnant women resident
in Avon, UK, with expected dates of delivery 1 April
1991 to 31 December 1992

e Qut of this 13 988 live born infants survived to at least
one year of age.

e Children eligible for inclusion in the analysis:
(1) had DNA available for genotyping;
(2) attended the research clinic at age 9 and

(3) had complete data on height and dual energy X-ray
densitometry (DXA) scan-determined total fat mass
and total BMD.




2.2. Selection of genotypes

Eleven adiposity-related SNPs identified in previous
GWAS have been genotyped in ALSPAC.

Four SNPs, namely FTO (rs9939609), MC4R
(rs17782313), TMEM18 (rs6548238) and GNPDA?2
(rs10938397), that had the strongest association with
adiposity in previous studies were chosen a priori for
the IV analysis.

~unctional studies are required to ascertain the specific
niological pathways through which these
nolymorphisms affect adiposity.

However studies have shown that the pathways to
greater adiposity are likely to involve influences on
diet/appetite or physical activity.




3. Assessment of the IV assumptions

For the assessment of the IV assumptions they
assumed:

 That the underlying mechanisms by which they
influence diet or physical activity differ for each of
the variants under consideration.

e Although current knowledge about their function is
limited, their location on different chromosomes
suggests that their influences may indeed be
independent.



Encoded IV assumptions in a directed acyclic graph (DAG)

Confounders

FT0

oA~

TMEM18

GNPDA? /

Fatmass = Bone mineral density

Figure 1. DAG for a Mendelian randomisation analysis using four genetic variants as instrumental variables for the
effect of fat mass on bone mineral density.



Statistical methods:-Parametric data

Fat mass and BMD were positively skewed and were log
transformed.

To account for sex and age differences in fat mass and
BMD, age and sex standardised z-scores of log
transformed fat mass and BMD were used in the

analysis.

Height and height-squared were included as covariates
in analyses.

They exponentiated parameter estimates to derive
ratios of geometric mean BMD per standard deviation
(SD) increase in log fat mass.

Analyses were performed in Stata 11.0.



Statistical methods : Genetic data

Genotypes were incorporated into IV models assuming
an additive genetic model for the genotypes coded O, 1
and 2

They used the two-stage least squares (TSLS) for IV
estimation

The estimator was implemented in the user written
Stata command ivreg

The Hausman test of endogeneity was used to
compare the difference between the ordinary-least-
squares (OLS) and TSLS estimates using the user-
written Stata command ivendog.

In models including multiple instruments the Sargan
test of over-identification available in the ivreg2
command, was used to test the joint validity of the
Instruments



Two-stage analysis

The causal association can be estimated using a two-
stage approach. With continuous outcomes, this is
known as two-stage least squares (2SLS)

In 2SLS, a linear regression of the risk factor is fitted
on the IVs (G—X regression), and secondly a linear
regression of the outcome on the fitted values for the
risk factor from the first stage regression ( "X =Y
regression).

The 2SLS estimate ( ~ 62SLS) is the coefficient for the
increase in outcome per unit increase in risk factor.

With binary outcomes, an analogous estimate has
been proposed, called a two-stage , pseudo-2SLS -
two-stage predictor substitution or Wald-type
estimator



2 Stage least Squares Analysis

* This replaces the second linear "G =Y regression
with a logistic regression. With a single
instrument,

e the 2SLS and two-stage methods estimators
coincide with the ratio of coefficients from the
appropriate G-Y regression (linear or logistic)
divided by the coefficient from the G—X regression

 There are several difficulties with this approach.
Firstly, the fitted values for the risk factor are
plugged into the second-stage regression without
accounting for Secondly, the distribution of the
causal parameter is assumed to be normal



Estimation of causal association

 |f all associations are linear and subject to
interactions, the causal effect of a factor on an
outcome can be estimated by the ratio of :

Regression coeff. of outcome (Y) on instrument(G)

Regression coeff. of factor(X) on instrument (G)

= BGY/ BGx — va




2.4. Results for separate instruments:
Table |. Study participant characteristics, total eligible children N =5509

Mean (5D), geometric mean HWE p-value
N (%) (95% CI) or N (%) for genotypes
Gender: N(%) Female 5509 (100%) 2713 (49.3%)
Age: Mean (SD) years 5509 (100%) 9.88 (0.32)
BMD: geometric mean (95% Cl) g/em” 5509 (100%) 0.902 (0.900, 0.903)
Fat mass: geometric mean (95% Cl) g 5509 (100%) 7209 (7100, 7320)
Height: mean (SD) cm 5509 (100%) 139.6 (6.3)
FTO (rs9939609): 5091 (92%) TT=0: 868 (37%) 0.51
TA=1: 2413 (47%)
AA=2: 810 (l6%)
MC4R (rs17782313): 5412 (98%) TT=0:3115 (58%) 0.04
TC=1:2017 (37%)
CC=2: 280 (5%)
TMEMI8 (rs6548238): 5323 (97%) CC=0: 3705 (70%) 0.57
CT=1: 1465 (28%)
TT=2: 153 (3%)
GNPDAZ2 (rs10938397): 5303 (96%) AA=0: 1731 (33%) 0.84
AG=|: 2604 (49%)

GG=2: 968 (18%)

HWE: Hardy-Weinberg Equilibrium.



2.4. Results for separate instruments:

able 2. Associations of genotypes with potential confounding factors

enetic variant  Covariate (unit) (N)

Mumber of risk alleles

0 I

ontinuous confounding factors

Mean (95% Cl)

Mean (95% Cl)

Mean (95% Cl)

Regression coefficient®
(95% CI), p-value

o Height (cm) (5091)
Lean mass (g) (2515)
IC4R Height (cm) (5412)
Lean mass (g) (2685)
MEM |8 Height (cm) (5323)
Lean mass (g) (2640)
NPDA2 Height (cm) (5303)

Lean mass (g) (2625)

139.5 (139.2, 139.7)
24426 (24218, 24634)
139.7 (139.4, 139.9)
24 548 (24 387, 24708)
139.7 (139.5, 139.9)
24770 (24 622, 24917)
139.5 (139.3, 139.8)
24596 (24 382, 24810)

139.6 (139.3, 139.8) 139.8 (139.4, 140.3)
24620 (24439, 24800) 24593 (24287, 24 8%9)
139.5 (139.2, 139.8) 140.1 (139.4, 140.9)
24636 (24438, 24834) 24910 (24362, 25 458)
139.5 (139.1, 139.8) 139.3 (138.3, 140.3)
24286 (24053, 24519) 24017 (23293, 24 740)
139.6 (1394, 139.9) 139.7 (139.3, 140.1)
24655 (24479, 24832) 24525 (24234, 24 816)

0.18 (~0.07, 0.42), p=0
104 (—74, 283), p =0.2!
00! (—0.28, 0.29), p=0
128 (—78, 334), p =0.2:
—024 (—0.56, 0.08), p=0
—447 (—679, —215), p </
0.10 (=0.14, 0.34), p=0
~21 (~198, 155), p =04

ategorical confounding factors n/N (%) nf/N (%) nfN (%) Odds ratio® (95% CI), p-v:
o MEA (2421) 139/857 (16%) 189/1161 (16%) 69/403 (17%) |.03 {0.88, 1.20), p=0.72€
HHSC (2329) Chi-squared p=0.038
|C4R MEA (2591) 255/1492 (17%) |55/971 (16%) 25/128 (20%) 0.99 (0.83, 1.18), p=0.925
HHSC (2485) Chi-squared p= 0432
MEM I8 MEA. (2543) 314/1765 (18%) |07/705 (15%) 4/73 (5%) 0.74 (0.60, 0.92), p =0.00¢
HHSC (2438) Chi-squared p= 0556
NPDA2 MEA (2532) |51/838 (18%) 203/1236 (16%) 69/458 (13%) 0.90 (0.77, 1.04), p=0.155

HHSC (2432)

Chi-squared p = 0.754

EA: Mather's highest educational achievement is a binary variable derived from the groups 0= CSE, O-level, Vocational and | = A-level and degree.
HSC: Head of household social class coded as categorical variable |, I, Ill nen-manual, Il manual, IV and V.

Assuming an additive genetic model.



2.4. Results for separate instruments:

Table 3. OLS and IV estimates of the effect of fat mass on bone mineral density (BMD) based on complete case analysis, N= 479"

First stage regression First  First stage Ratio of peometric mean  SE of estimate Hausman  Sargan test

Method coeficient (5% CI)  stage R* Faatistic BMD® (05% C) (log scale) et pvalue Pevalue
0L NA NA  NA .22 (1.19, 1.28), p< 0001 0014 NA NA
IV: SNP(s) used as IV

f10 01008015 00082 3983  [44(1.05 197),p=0014 0.l6 0300  NA
MC4R 009 (005,003 00037 1785 1233 (1.34,405),p=0003 0.8 0006  NA
TMEMIS 006 (-0.11,-002) 0006 747  227(098, 528) p=0056 043 0089  NA
GNFDAZ 005(001,009  o000l6 757  098(047,203) p=0953 037 0340  NA
FT0, MC4R NA 00119 2992 167 (127, L19), p<0.001 0.14 0020 Ol
FT0, MC4R, TMEM I8 NA 003 2095  L73(1.34,224) p<0001 0.13 0010 01
FT0, MC4R, TMEM I8, GNPDAZ ~ NA 0053 1859 163 (1.28, 206), p<0.001 0.12 0013 0l

Unwelghed dlel score (4 SNP9) 006 (004,008 00069 3315 140(099,198),p=005 008 0410 N
Weighted i score (4SNPS)  0.19(015,024 00153 7435 163(129,207)p<0001 0.2 0012 NA

“Analyses adjusted for height and helght squared
“For a | unit increase in z-score of age and gender standardised fat mass.



Section 3: Using multiple instruments to address potential
biases in Mendelian randomization analyses

e Population stratification, linkage disequilibrium
and pleiotropy have been identified as factors
that could bias Mendelian randomization analyses

 The use of multiple instruments to address issues
they raise.



Section 3: Using multiple instruments to address potential
biases in Mendelian randomization analyses

e Comparison of IV estimates from independent genetic
variants is analogous to comparing the results of RCTs of
different classes of blood pressure lowering drugs, which
lower blood pressure by different mechanisms.

e |f the effect of the drug on stroke risk in each RCT is

proportional to the direction and magnitude of its effect on
blood pressure,

e |t strengthens the evidence for a causal link between blood
pressure and stroke risk, and against the drugs having
effects on stroke risk through other mechanismes.



Section 4: Statistical issues relating to use of multiple
instruments in Mendelian randomization analyses

* Over-identification -the situation when there is more
than one instrument for a single risk factor of interest

or, more generally, when there are more instruments
than endogenous variables.

* |n such circumstances testing the ‘over-identification
restriction’ checks the joint validity of multiple
instruments by testing whether they give the same
estimates when used singly or in linear combination.

e Two commonly used tests of over-identification; the
Hansen test and the Sargan test.



Section 4.2 : Finite sample bias and instrument strength

IV estimators such as TSLS are asymptotically
unbiased but biased in finite samples, with such
bias inversely proportional to the amount of
phenotypic variability explained by the instrument.

Two closely related measures of this are the first-
stage regression F-statistic and coefficient of
determination R2.

It is important to report these. If measured
confounders are included then the partial R2 and F-
statistics for the instruments should be reported.



Section 4.2 : Finite sample bias and instrument strength-
Cont’d

* In Mendelian randomisation the first stage R2 is the
proportion of risk factor variability explained by
genotype. The relationship between the F and R2
statistics is given by:

R/ k

F_(I—R'Ejhf(n—k— 1)

where k is the number of parameters in the model (in this
case instruments). The relative bias of the TSLS estimator to
the OLS estimator is related to the inverse of the F-statistic.



Section 4.2 : Finite sample bias and instrument strength-
cont’d

Hahn and Hausman gave a simplified version of the

relative bias as approximately the inverse of the F-
statistic

bias TSLS k&

s

bias OLS nR-

As R2 increases the relative bias of TSLS decreases, but
including additional instruments that do not increase the first
stage R2 increases the relative bias of TSLS.

A first stage F-statistic less than 10 is often taken to indicate a
weak instrument, although this is not a strict limit but a rule
of thumb drawn from simulation studies.



4.3 Statistical power

 Genotypic effects on phenotypes are typically
small, so Mendelian randomization analyses can
require very large sample sizes to obtain adequate
power.

e When multiple instruments are used in the TSLS
estimator, the resulting IV estimate can be viewed
as the efficient linear combination of the separate
IV estimates; provided that each instrument is
valid

e Use of multiple instruments will increase the
precision of the IV estimate compared with the
separate |V estimates



4.4 Use of an allele score as an instrumental variable

An allele score is a weighted or unweighted sum of
the number of ‘risk’ alleles across several genotypes:
weights are usually based on each genotype’s effect
on the phenotype.

Use of such scores is becoming more common in
gene—disease association studies.

To justify the use of an allele score the genotypes

should have an approximately additive effect on the
risk factor.

For an unweighted score they should also have
similar per allele effects



5.1. Multiple instrument simulations

5.1 Simulation |: non-weak instruments

Data were smulated as follows, where G, G, and (75 are genotype variables coded additively, X is the
risk factor, ¥ the disease outcome, U the unmeasured confounder and subscript 7 denotes a subject:

Gy; ~ Bin(2,0.3), Gy ~ Bin(2,0.3), Gy ~ Bin(2,0.3), and,
U; ~ NO.1).
Xi=0.55G); + 046Gy +0.25G3 + Ujand Y, = BX; + U,

The values of the coefficients on the genotypes were chosen so that G; explamed the most
variability in X, followed by G, and G;. The value of the causal effect of X on Y, B, was set to 1.
We monitored the estimates of 8 from the following models:

1) OLS estimate of the regression of ¥ on X,

2) TSLS using G, as the mstrument,

3) TSLS using G, and G5 as instruments,

4) TSLS using G,-G5 as instruments,

5) TSLS using an unweighted allele score of G,-G5 as an instrument,
)

6) TSLS using a weighted allele score of G,~G5 as an instrument.

(
(
(
(
(
(



5.2 Simulation 1: results

Table 4. Simulation | (non-weak instruments): results (Monte Carlo standard error reported in brackets beside each estimate)

Average absolute
Modd Averagebias MO Aerage SE - Coverage  Average 3 AverggeF - TSLSIOLS bias ratio

. OL§ 08194(000003) 06714 (0.00009) 00054 (TE-1) 0 NA NA NA

LTSSG 00019 (00004) 00016 (000002) 003%91 (0.00003) 09523 (00021) 0.1163 (00001) 58141 (0.504) 00022 (0.0005

J,TSLS G & Gy 000004 (0.0003) 00010 (000002) 003215 (0.00002) 03467 (00022) 0.18%8 (00001) 474,09 (0.333) 00001 (0.0004

4 ToLS GGy 000084 (00003)  0.0009 (0.00001) 00301 (000002) 0.947 (00022) 02212 (0.0001) 36841 (0.243) 00012 (00004

5, TSLS allele 000098 (0.0003) 00010 (000002) 00316 (000002) 03486 (00022) 0.19] (00001) 990.22 (0.685) 00010 (0.0004
score GGy

b, TSLS weighted 0.00084 (0.0003) 00009 (000001) 00301 (0.00002) 05492 (00022) 0:2212(00001) 110543 (0.730) 0.0012 (0.0004)

allele score
GGy

="

e

e ™ i
e

e

MSE: mean squared error, SE: standurd error, TSLS two-stage least squares, OLS: ordinary least squares.



5.2. Results from simulation- cont’d
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Models: 2. TSLS G, 3. TS5LS G, G;, 4. TSLS Gy—G,, 5. Score G, G;, 6. Weighted score G; G4

Figure 2. Simulation | (non-weak instruments): power curves.




5.3 Simulation 2: non-weak and weak instruments

Data were simulated with four IVs as follows such that G, and G, had F-statistics greater than 10
and (3 and G4 had F-statistics less than 10. The vanables were simulated as: Gy;~Bin(2,0.4),
Gy~Bin(2,02), Gy~Bin(20.2), G;~Bin(2,04), and, U~N({101), X.=0.1G,+0.1Gy +
0.05G3; 4 0.05Gy; + U; and Y;=pX; + Us. The value of the causal effect of X on ¥, f, was set to
|. We monitored the estimates of f from the following models:

)
) TSLS estimate using G, as the IV;

) TSLS estimate using Gy and (> as the IVs;

) TSLS estimate usimg G, G», Gy and G as the IVs;

5) TSLS estimate using an unweighted allele score of G, and G, as the IV;

(6) TSLS estimate using a weighted allele score of G, and G, as the IV;
(7) TSLS estimate using an unweighted allele score of G1-G4 as the IV;
(8) TSLS estimate using a weighted allele score of G-Gy as the IV |



5.4. Simulation 2:Results for joint weak & strong instruments

Table 5. Simulation 2 (nonweak and weak instruments]: results (Monte Carlo standard error in brackets beside each estimate)

Moddl

. OLS

LTSS G,

LT G & G

4, TSLS GG

5, TSLS allele score Gy & G

Average bias  MSE

Av. absolute
TSLYOLS

Average S Coverage Avemgeki Average F - bias ratio

099 (0001) 0980 (000003 0004 (19E) 00 NA  NA  MA

0047 (L0025) 0067 (0003
0001 (0017) 0.8 0000
0040 (0013) 002000003
0006 (L0018) 0032 00007

G TSI weighted allescore G, & G, 0001 (0017) 0.8 (0000

1 TLS allele score GG

B. TSLS weighted allele score G,

004 (0.0016) 0027 (0000
0040 00013) 0020 (0003

0237 (00015) 0.3 (00025 0005 (000002 2452 (00%9) 0.4 (0083
1164 (0000€) 0.9 (00027 0008 (000003 2099 (0045) 0.01 (0002
0137 (00004) 089 (00031 0011 (000003 1350 (003¢) 0.4 (000)
0172 (0000€) 0.9 (00024) 0008 (00003 4099 (0.28) 0.7 (000D

)

)

)

pa——

e =

0164 (0000€) 092 (10027 0008 (000003 4159 (0.29) 001 (0002
1160 (00005) 0.9 (00024) 0009 (000003 4591 (013¢) 0.024 (000D
0137 (00004) 089 (00031 0011 0000 ) 0041 0201

="

e
Eml ml el el el e

A01{0.145

e

MSE: mean squared error, SE: sandard error, TELS: two-stage least squares, OLS: ordinary lmst squares



5.4 Simulation 2: results- cont’d

Models: 2 3 4 Models: 5 6 7 8

Models: 2. TSLS Gy, 3. TSLS Gj Gg, 4. TSLS Gy—Gy, 5. Score Gy Gy, 6. Weighted score Gy Gy, 7. Score Gy—G;, 8. Weighted score GGy

Figure 3. Simulation 2 (non-weak and weak instruments): power curves.



6. Multiple instrument estimates and assessment of missing data

6.1 Multiple instrument estimates
Table 3. OLS and IV estimates of the effect of fat mass on bone mineral density (BMD) based on complete case analysis, N= 4796"

First stage regression Frst  First stage Ratio of geometric mean  SE of estimate Hausman  Sargan test

Method coefficient (95% CI)  stage R® Fstatistic BMD® (95% Cl) (log scale)  test pvalue P-value

OLS NA NA  NA 122 (119, 1.26), p< 0,001 0.014 NA NA

[V: SNP(s) used as [V
F10 0.11 (0.08, 0.15) 00082 3983  [44(1.05, 1.97), p=0024 0.6 0.300 NA
MC4R 0.09 (0.05, 0.13) 00037 1785 233 (1.34,405), p=0003 0.8 0.006 NA
TMEMISB -006 (-0.11,-002) 00016 747 227 (0.98, 5.28), p=0.056 0.43 0.089 NA
GNPDAZ 0.05 (0.01, 0.09) 00016 757 0.98 (047, 203), p=0953 037 0.540 NA
FT0, MC4R NA 00119 2992 167 (127, 219),p< 0001 0.14 0.020 0.1
FT0, MC4R, TMEM I8 NA 00136 2195  1.73(1.34,224), p< 0001 0.13 0010 0.22
FT0, MC4R, TMEMI8, GNPDAZ ~ NA 00153 1859  163(1.28, 206), p<000l 0.12 0013 0.16
Unweighted allele score (4 SNPs) 0.06 (0.04, 0.08) 00069 3315  140(099, 1.98), p=0055 0.8 0430 NA
Weighted allele score (4 SNPs)  0.19 (0.15, 0.24) 00153 7435  163(129,207), p<0001 0.12 0012 NA

“Analyses adjusted for height and height squared,
For a | unic increase in z-score of age and gender standardised fat mass.



6.2 Assessment of missing data

Table 6, IV estimates of the efect of fat mass on bone mineral densiey (BMD) using all valble dats™

NPs used as First stage regression  First  First stage  Ratio of peometric F of estimate Hausman  Sargan test
ntrumental varisble N coeficent (5% C)  smgeR Fotatistic mean BMD’(05KC)  (logscdle) test palue poalue

OLS 3509 NA NA NA L2 (LI8 1.25) p< 000 0014 NA NA
V: SNP(s) used as IV

f10 91 012008015 00088 4535 141 (105, 189),p=0023 0.1 030 NA
MOk 12009005003 00057 1995  241(142412),p=0001 027 0002 NA
TMEM 8 33 006 (-0.11,-000) 00013 6%  217(092 512, p=0017 044 010 NA
GNPDAZ 5303 005(001,008 00013 6%  092(042200)p=084 040 043  NA
FT0, MC4R 5007 NA 0015 3061 160(124 207) p<0001 0.I3 W0y ol
FT0, MC4R, TMEM 8 4881 NA 00038 2075 [89(L3L 117) p< 0001 0.3 0006 0207

“Analyss adjusted for heght and height squared
"For a | unit ncrease In score of e and gender standirded ot mas,



Conclusion

The illustrative Mendelian randomisation analysis confirmed a
positive causal effect of adiposity (fat mass) on BMD the result
suggested that the size of this effect was larger than that estimated
by ignoring unmeasured confounding and using ordinary least
squares, based on the Hausman endogeneity test.

The SE of the IV estimate decreased by around 20% using all four
genotypes, compared with the SE of the IV estimate using only the
genotype with the strongest effect on risk factor. Such a reduction in
SE corresponds to a 56% increase in sample size.

With increasing availability of multiple genetic variants associated
with the same risk factor or disease outcome, it is becoming common
for genetic association studies to report associations with allele
scores.

Before an allele score is used as an |V the joint validity of the SNPs
should be assessed using an over-identification test.



CLOSING COMMENTS
Mendelian randomization has potential shortcomings:

(1) The technique is only as reliable as the robustness
of the estimates of the effect sizes of the variant
on the phenotype and of the phenotype on
disease

(2) It assumes that the DNA variant does not influence
the disease by means other than the intermediate
phenotype being studied (pleiotropy), which may
not be true.

Nevertheless, Mendelian randomization has the
potential to be as informative as a traditional
randomized clinical trial.
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