

#### **Journal Club Presentation**

# Consistency and inconsistency in network meta-analysis: concepts and models for multi-arm studies<sup>‡</sup>

Presenter: Natthapong Hongku, M.D.

**Commentator: Napaphat Poprom** 

Academic Coordinator: Pawin Numthavaj, M.D., Ph.D.

19 January 2018

Wisdom of the Land

#### **Special Issue Paper**

Research Synthesis Methods

Received 22 June 2011,

Revised 11 May 2012,

Accepted 15 May 2012

Published online in Wiley Online Library

(wileyonlinelibrary.com) DOI: 10.1002/jrsm.1044

# Consistency and inconsistency in network meta-analysis: concepts and models for multi-arm studies<sup>‡</sup>

J. P. T. Higgins, a,b\*† D Jackson, J. K. Barrett, G Lu, A. E. Ades and I. R. White

Wisdom of the Land



#### Outline of talks

Introduction

Concepts of heterogeneity and inconsistency

Models for inconsistency

Discussion and Conclusion



#### Introduction

- Compare multiple treatments
  - -> More useful than pairwise comparisons alone
  - -> Ranking of treatment interventions
- Network meta-analyses (NMA)
  - -> Simultaneous analysis of both direct and indirect comparisons among multiple treatments across multiple studies

GleserandOlkin,1994;HigginsandWhitehead,1996;Lumley,2002; Lu and Ades, 2004; Caldwell et al., 2005; Lu and Ades, 2006; Salanti et al., 2008; Ioannidis, 2009)



- Component of NMA
- -> Assessment of the different of comparable sources of evidence both substantively and statistically
- Simple indirect comparison will be confounded
- -> If studies involving one of interested treatments are fundamentally different from the studies involving the other treatment

"Termed incoherence or inconsistency in the literature"



#### Outline of talks

Introduction

Concepts of heterogeneity and inconsistency

Models for inconsistency

Discussion and Conclusion



- Indirect comparisons
- Heterogeneity
- Consistency
- Loop inconsistency
- Multi-arm trials
- Design inconsistency
- Design-by-treatment interaction



#### Indirect comparison

Maintains benefits of randomization within each trial

• Provided that the differences affect **only** prognosis of participants and not their response to treatment

- Trial 1: Two-arm trial of 'B–A' comparison  $[\hat{\delta}_{1}^{AB}] = \text{Estimated effect sizes of trial 1}$
- Trial 2: Two-arm trial of 'C–B' comparison  $[ \hat{\delta}_2^{BC} = \text{Estimated effect sizes of trial 2} ]$
- Then, indirect comparison of 'C-A' as....

$$\hat{\delta}_{(\text{indirect})}^{AC} = \hat{\delta}_{1}^{AB} + \hat{\delta}_{2}^{BC}$$



#### On assumption....

- B treatment as same in both trials
- When 'B-A' and 'C-B' are added together
  - -> B effects are cancelled out
- Indirect comparison
  - -> reflective of difference between A and C is not testable in absence of further information

- Third trial of 'C–A' (yielding result  $\hat{\delta}_3^{AC}$  )
- -> Compare the indirect comparison with a direct comparison
- Network of 3 trials is consistent
   If underlying treatment effects are related as follows:

$$\delta_3^{AC} = \delta_1^{AB} + \delta_2^{BC},\tag{1}$$

 $\delta_1^{AB}$ ,  $\delta_2^{BC}$  and  $\delta_3^{AC}$  -> represent true effects underlying 3 studies



Equation (1) -> very unlikely to hold for particular set of 3 trials because....

- In terms of heterogeneity:
   Within each treatment comparison, each individual study is not fully representative of all studies of that particular comparison
- In terms of inconsistency:

  Across treatment comparisons, there are important differences in types of studies contributing to comparisons



- Indirect comparisons
- Heterogeneity
- Consistency
- Loop inconsistency
- Multi-arm trials
- Design inconsistency
- Design-by-treatment interaction

#### Heterogeneity

- Multiple studies of same research question have different values of estimated effect measurement.
- By holding treatment comparison constant and varying study index.

• Heterogeneity may be present for comparison 'B–A' if  $\delta_i^{AB} \neq \delta_i^{AB}$  for some pair of studies i and j

#### Heterogeneity

- Heterogeneity has been argued to be inevitable in metaanalysis...
- : 2 trials of same pairwise comparison are unlikely to have equal underlying treatment effects
  - -> Equality in equation 1 is questionable

[Particular instance of 'C-A' investigated in trial 3 is unlikely to represent all instances of 'C-A' comparisons]

#### Heterogeneity

- Random-effects model
  - -> Common way to allow for heterogeneity
- Assumes that underlying effects in multiple studies of same comparison come from normal distribution



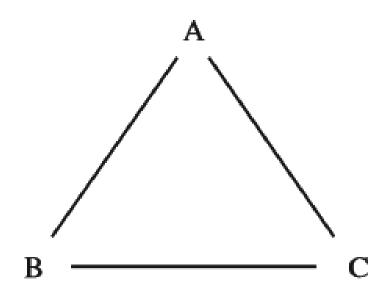
- Indirect comparisons
- Heterogeneity
- Consistency
- Loop inconsistency
- Multi-arm trials
- Design inconsistency
- Design-by-treatment interaction



#### Consistency

#### Consistency equation

$$\delta^{AC} = \delta^{AB} + \delta^{BC}$$


 Show desirable relationship between direct and indirect sources of evidence for single comparison



#### Consistency

Network with only two-arm trials

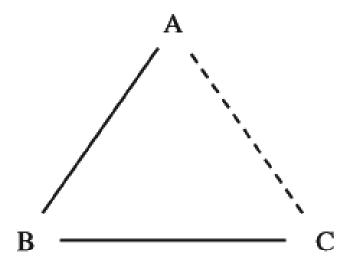
Triangle of relationships with 3 (nontouching) solid edges



- Each edge represents 1 or >2 arm trials comparing 2 treatments identified at either end of edge
- All 3 edges used same line style (solid line)
  - -> There is no conflict (inconsistency)

Consistency in 2 arm trials




- Indirect comparisons
- Heterogeneity
- Consistency
- Loop inconsistency
- Multi-arm trials
- Design inconsistency
- Design-by-treatment interaction



#### **Loop Consistency**

Studies of different treatment comparisons
-> Different in ways that affect effect sizes

Drawing edges in different line styles



Evidence on direct comparison AC (dashed line) **conflicts with** evidence drawn via indirect comparison AB, BC (solid lines)

Loop inconsistency in 2 arm trials

#### **Loop Consistency**

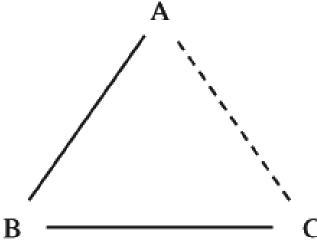
 Occur only at least 3 separate sets of studies making different comparisons
 (For example, 'B-A', 'C-A' and 'C-B' studies)

Or

 When both indirect and direct estimates of effect size are available

(For example, when 'C-B' is measured both directly and via 'A' as indirect estimate)




#### Causes of Loop Consistency

: Participants in head-to-head studies 'C-A' are **different** from studies 'B-A' and 'C-B' (Because they are contraindicated for treatment B)

: Versions of treatment B are different in studies 'B-A' and 'C-B' (Because of different doses) that are associated with magnitude of treatment effect -> Sum of 'B-A' and 'C-B' not equal to 'C-A'

: Studies of different comparisons were different periods, different settings or different contexts (studies 'C-B' = recent but studies A = old historical standard)





Loop inconsistency in 2 arm trials

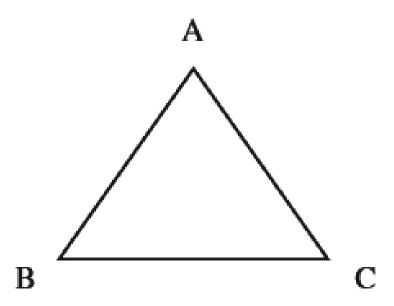


Loop inconsistency in 2 arm trials (Alternative)

- 3 edges could be drawn in 3 different line styles to indicate that different effect modifiers are associated with each edge in loop
- Difference cannot be tested statistically & have to be informed by expert judgement



- Indirect comparisons
- Heterogeneity
- Consistency
- Loop inconsistency
- Multi-arm trials
- Design inconsistency
- Design-by-treatment interaction


#### Multi-arm trials

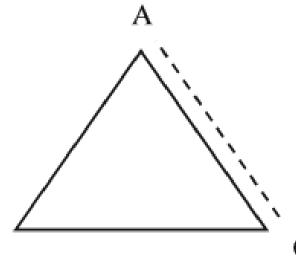
- Studies with > 2 treatment arms
- Network of multi-arms trial may be consistent
- : By structurally (because all studies include all treatments) or...
- : By observation (assumptions around equality of direct & various indirect comparisons hold across studies) or...
  - : Combination of both



#### Multi-arm trials

Loop inconsistency cannot occur within multi-arm trial




Consistency is considered in 3 arms trials using closed (joined-up) polygon



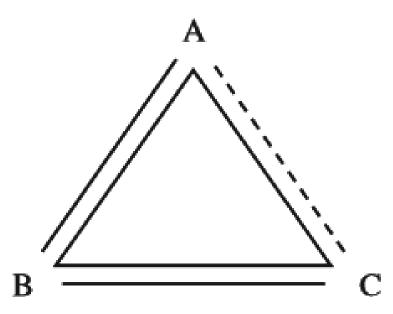
- Indirect comparisons
- Heterogeneity
- Consistency
- Loop inconsistency
- Multi-arm trials
- Design inconsistency
- Design-by-treatment interaction



- 'Design' of a study = Set of treatments compared within study
- Design inconsistency = Differences in effect sizes between studies involving different sets of treatments
- Potential conflicts between study designs represented by different line styles



AC effect size in 3-arm trials (drawn as solid line) differs from 2-arm trials (drawn as dashed line)

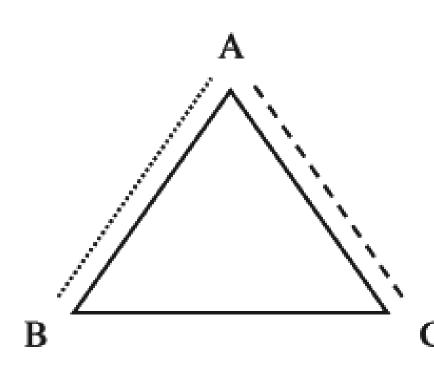



When multi-arm trial is involved

: loop inconsistency in two-arm trials indicates design inconsistency

Because multi-arm trial must be internally consistent -> difference between effect sizes from multi-arm trial

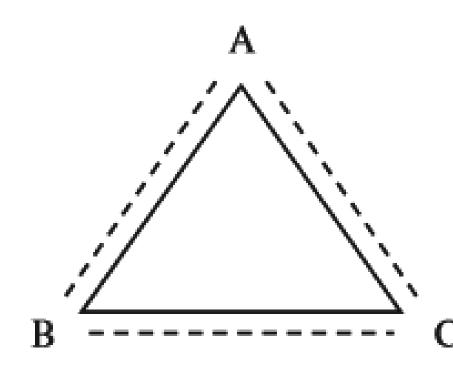





Design inconsistency and loop inconsistency

: Pairwise trials display loop inconsistency

whereas 3-arm trials conflicts with at least 1 pairwise trial reflecting design inconsistency






Design inconsistency with one 3-arm trial & two 2-arm trials

- Loop can be constructed by isolating BC comparison from 3-arm trial and comparing it with two-arm trials
- However, this ignores presence of consistent loop within 3-arm trials
- -> unclear we should describe this network as displaying loop inconsistency





- Two-arm trials

   consistent among
   themselves, but effect sizes
   differ from those of multi arm trial
- Does this display design inconsistency without loop inconsistency?

Design inconsistency without loop inconsistency?



- Indirect comparisons
- Heterogeneity
- Consistency
- Loop inconsistency
- Multi-arm trials
- Design inconsistency
- Design-by-treatment interaction



### Design-by-treatment interaction

- Loop inconsistency reflects important question of whether direct and indirect evidence agree with each other
- Design inconsistency reflects less substantive interest question; particular choice of treatments in study is associated with different effect sizes for particular contrasts

Presence of multi-arm trials, distinction between two types is difficult



### Design-by-treatment interaction

- Meta-regression approach for design inconsistency
- Method describes by Lu and Ades for loop inconsistency
- We argue case for statistical model that encompasses both types of inconsistency
- This is a model that includes the full set of design-bytreatment interaction terms



## Outline of talks

Introduction

Concepts of heterogeneity and inconsistency

Models for inconsistency

Discussion and Conclusion



# Models for inconsistency

Design-by-treatment interaction model

Lumley model

The Lu–Ades model



Full model for design-by-treatment interaction

J=A, B, ... index treatments

d=1, ... index designs

i=1, ... index studies

Consider parameter  $\mu_{di}^{AJ}$  reflect treatment effect compare treatment J with reference treatment A in study i

Model for treatment effect parameters: not necessary for treatment A to have been included in every study

$$\mu_{di}^{AJ} = \delta^{AJ} + \beta_{di}^{AJ} + \omega_{d}^{AJ},$$



$$\mu_{di}^{AJ} = \delta^{AJ} + \beta_{di}^{AJ} + \omega_{d}^{AJ},$$

- Where  $\delta^{AJ}$  is fixed effect of treatment J relative to A
- $\beta_{di}^{AJ}$  is study-by-treatment interaction term to reflect standard heterogeneity (variability in treatment effects for comparison AJ, within studies of design d)
- $\omega_d^{N_d}$  is design-by-treatment interaction term to reflect inconsistency (variability between designs)

$$\mu_{di}^{AJ} = \delta^{AJ} + \beta_{di}^{AJ} + \omega_{d}^{AJ},$$

- This model has largest number of degrees of freedom (d.f.) among models allowing for both loop and design inconsistency
- Inconsistency parameter  $\omega_d^{AJ}$  describes perturbation in AJ comparison in specific study design D



Prefer fixed effects because.....

: Common distribution assumption in random-effects formulation is impossible

: Facilitates straightforward test of null hypothesis of consistency throughout network of comparisons

: Easier and less sensitive to reparameterization

: There are often too few inconsistency parameters for randomeffects model to produce reliable inferences on random-effects variance parameter



Disadvantage of fixed-effects approach

: Constraints are required on  $\omega_d^{AJ}$  terms in order to avoid over-parameterization

-> Interpretation of  $\delta^{\prime\prime}$  parameters is not straightforward depends on parameterization of model



• Example, Network with 4 designs AB, AC, BC and ABC

| <b>Table 1.</b> Design-by-treatment interaction model for three treatments (all possible designs). Heterogeneity terms have been omitted. |     |                             |                             |     |  |
|-------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------------------------|-----------------------------|-----|--|
| Design                                                                                                                                    | Α   | В                           | C                           | A   |  |
| ABC                                                                                                                                       | Ref | $\delta^{AB}$               | $\delta^{AC}$               |     |  |
| AB                                                                                                                                        | Ref | $\delta^{AB}+\omega_2^{AB}$ | _                           |     |  |
| AC                                                                                                                                        | Ref | _                           | $\delta^{AC}+\omega_3^{AC}$ |     |  |
| ВС                                                                                                                                        | Ref | $\delta^{AB}$               | $\delta^{AC}+\omega_4^{AC}$ | В С |  |

- : This network has potential for 3 conflicts & has 3 d.f. for inconsistency
- : Reflected 4 different line styles



Three potential conflicts may be parameterized as follows:

- Difference in 'B–A' effects between AB and ABC studies  $\omega_2^{AB}$
- Difference in 'C–A' effects between AC and ABC studies  $\omega_3^{AC}$
- Difference in 'C–B' effects between BC and ABC studies
   which could be placed on either treatment B or C
   (we adopt convention of placing it on last of such possibilities ω<sup>AC</sup><sub>A</sub>



For example, following separates out parameter to represent loop inconsistency

: Loop inconsistency in two-arm trials, by contrasting direct evidence 'B-A' in AB studies with indirect evidence involving 'C-A' from AC studies and 'C-B' from BC studies

$$\omega^{(1)} = \left(\delta^{AB} + \omega_2^{AB}\right) - \left(\left[\delta^{AC} + \omega_3^{AC}\right] - \left[\left(\delta^{\tilde{A}C} + \omega_4^{AC}\right) - \delta^{AB}\right]\right) = \omega_2^{AB} - \omega_3^{AC} + \omega_4^{AC}$$

: Design inconsistency, by contrasting 'B-A' effects between AB and ABC studies

 $\omega^{(2)} = \omega_2^{AB}$ 

: Design inconsistency, by contrasting 'C-A' effects between AC and ABC studies

$$\omega^{(3)} = \omega_3^{AC}$$



# Models for inconsistency

Design-by-treatment interaction model

Lumley model

The Lu–Ades model



## **Lumley model**

 Full design-by-treatment interaction model proposed by Lumley in 2002

Inconsistency factors follow random-effects distribution

However, model was constructed only for two-arm trials,
 a not extension to multi-arm trials



## Lumley's model for simple network of 3 pairwise comparisons

| Table 2. Lumley model for three treatments (applicable only to two-arm trials). |     |                        |                          |   |
|---------------------------------------------------------------------------------|-----|------------------------|--------------------------|---|
| Design                                                                          | Α   | В                      | C                        | A |
| AB                                                                              | Ref | $\delta^{AB}+\omega_1$ | _                        |   |
| AC                                                                              | Ref | _                      | $\delta^{AC} + \omega_2$ |   |
| ВС                                                                              | Ref | $\delta^{AB}$          | $\delta^{AC} + \omega_3$ | / |
| Assumption for inconsistency factors: $\omega_d \sim N(0, \sigma_\omega^2)$     |     |                        | В                        | C |

- Network of only pairwise studies
- -> Inconsistency parameters viewed as being clearly to specific pairwise comparisons
- Design-by-treatment interaction model present only 1 inconsistency factor for data set



# Models for inconsistency

Design-by-treatment interaction model

Lumley model

The Lu–Ades model



#### The Lu-Ades model

## Described by Lu and Ades (2006)

- Motivated primarily by loop inconsistency
- One inconsistency parameter is added for each independent closed loop in evidence network (not including loops created only by multi-arm trials)

| Table 3. Lu ar | nd Ades model for th | ree treatments with o | rder A, B, C (all possib    | le designs). |
|----------------|----------------------|-----------------------|-----------------------------|--------------|
| Design         | Α                    | В                     | C                           | A            |
| ABC            | Ref                  | $\delta^{AB}$         | $\delta^{AC}$               |              |
| AB             | Ref                  | $\delta^{AB}$         | _                           |              |
| AC             | Ref                  | _                     | $\delta^{AC}$               |              |
| ВС             | Ref                  | $\delta^{AB}$         | $\delta^{AC} + \omega^{AC}$ | в с          |



#### The Lu-Ades model

- Not guarantee that all possible independent closed loops are identified
- Lu and Ades ensured that they include all closed loops
- : by careful selection of modelled treatment contrasts from multi-arm trial
- For example
- : There are AB, AC and ABC studies
- : Ensured that BC contrast is among two modelled contrasts from ABC study

[because it forms closed loop with two-arm studies]



#### The Lu-Ades model

# Contains subset of inconsistency parameters from design-by-treatment interaction model

**Table 1.** Design-by-treatment interaction model for three treatments (all possible designs). Heterogeneity terms have been omitted.

| Design | Α   | В                                     | С                                                     | A   |
|--------|-----|---------------------------------------|-------------------------------------------------------|-----|
| ABC    | Ref | $\delta^{AB}$                         | $\delta^{AC}$                                         |     |
| AB     | Ref | $\delta^{AB}+\omega_{	extsf{2}}^{AB}$ | _                                                     |     |
| AC     | Ref | _                                     | $\delta^{\rm AC}+\omega_{\rm 3}^{\rm AC}$             |     |
| ВС     | Ref | $\delta^{AB}$                         | $\delta^{	extsf{AC}}+\omega_{	extsf{4}}^{	extsf{AC}}$ | В С |

| Table 3. Lu ai   | nd Ades model for th | ree treatments with | order A, B, C (all possik   | ole designs). |
|------------------|----------------------|---------------------|-----------------------------|---------------|
| Design           | Α                    | В                   | C                           | Α             |
| ABC              | Ref                  | $\delta^{AB}$       | $\delta^{\sf AC}$           |               |
| AB               | Ref                  | $\delta^{AB}$       | _                           |               |
| AC               | Ref                  | _                   | $\delta^{\sf AC}$           |               |
| Q <sub>B</sub> C | Ref                  | $\delta^{AB}$       | $\delta^{AC} + \omega^{AC}$ | ВС            |



| Design | Α   | В             | С                           | A   |
|--------|-----|---------------|-----------------------------|-----|
| ABC    | Ref | $\delta^{AB}$ | $\delta^{AC}$               |     |
| AB     | Ref | $\delta^{AB}$ | _                           |     |
| AC     | Ref | _             | $\delta^{AC}$               |     |
| ВС     | Ref | $\delta^{AB}$ | $\delta^{AC} + \omega^{AC}$ | В С |

- Model assumptions in choice of treatment as follows:
- : All studies containing treatment A are assumed to estimate same treatment effects
- : All studies containing treatment B but not treatment A are assumed to estimate same treatment effects
- : All studies containing treatment C but not treatment A or treatment B are assumed to estimate same treatment effects



### Although basing on loop inconsistency model, but

 Lu and Ades model depends on choice of baseline treatment to which all other treatments are compared (treatment A)

| <b>Table 3.</b> Lu and Ades model for three treatments with order A, B, C (all possible designs). |     |               |                             |       |  |
|---------------------------------------------------------------------------------------------------|-----|---------------|-----------------------------|-------|--|
| Design                                                                                            | Α   | В             | C                           | A     |  |
| ABC                                                                                               | Ref | $\delta^{AB}$ | $\delta^{AC}$               |       |  |
| AB                                                                                                | Ref | $\delta^{AB}$ | _                           | // \\ |  |
| AC                                                                                                | Ref | _             | $\delta^{AC}$               |       |  |
| ВС                                                                                                | Ref | $\delta^{AB}$ | $\delta^{AC} + \omega^{AC}$ | ВС    |  |



## Outline of talks

Introduction

Concepts of heterogeneity and inconsistency

Models for inconsistency

Discussion



- Propose design-by-treatment interaction models to identify inconsistency in NMA
- Propose more complex methods for illustrating evidence networks in multi-arm studies
- Evidence inconsistency is impossible within multi-arm study
- -> Loop inconsistency is difficult when there is mixture of two-arm and multi-arm studies



Design-by-treatment approach

- Integrates idea of loop inconsistency with possibility of design inconsistency
- Only way to avoid arbitrary modelling constraints in NMA
- Design-by-treatment interaction models requires careful evaluation in practice



### Major concern about validity of NMA

- : Possibility of loop inconsistency
- : Attention to differences due to design (choice of treatments included in studies)
- : Presence or absence of other treatment arms in individual trials
- : Complexity and loss in power in statistical tests involved (differences across designs -> low likelihood of finding important conflicts)



If inconsistency is identified in network

Q: What is the best strategy to proceed? -> Remain unclear

## Strategies for addressing inconsistency

- : Removing portions of evidence network
- : Splitting nodes in network
- (> 2 different treatments replace what was previously included as single treatment)
- : Using study-level or individual-level covariates
- : Seeking relevant inferences to presence of inconsistency



## Thank you for your comments