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Meta-analysis of rare event studies has recently become a subject of controversy and debate. We will
argue and demonstrate in this paper that the occurrence of zero events in clinical trials or cohort studies,
even if zeros occur in both arms (the case of a double-zero trial), is less problematic, at least from a
statistical perspective, if the available statistical tools are applied in the appropriate way. In particular,
it is neither necessary nor advisable to exclude studies with zero events from the meta-analysis. In terms
of statistical tools, we will focus here on Mantel-Haenszel techniques, mixed Poisson regression and
related regression models.
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1 Introduction and background

We are interested in meta-analysis of clinical trials with binary endpoints and with the occurrence of
rare events. A rare event here means that the event occurrence probability is so low that frequently
a small number or no events are observed in a trial, despite the fact that either the trial sizes or the
observation times are not small. Hence, it is different from meta-analysis of clinical trials with sparse
events where trial sizes are small (often for reasons of patient recruitment) but event probabilities
might not necessarily be small. Meta-analysis allows the researcher to reach conclusions based on
a set of independently performed studies. Provided that the information on an intervention effect is
reliable, meta-analysis is a powerful tool, used for analysing and combining the results obtained from
individual studies (Bohning et al., 2008). However, there are potential weaknesses when designing and
performing a meta-analysis, which is why controversy often arises among researchers.

The work is motivated by a recent debate on the cardiovascular safety of the diabetes drug Rosigli-
tazone, which arose after a publication of a meta-analysis that showed a significantly elevated risk
for myocardial infarction (MI) and a borderline significant increased risk for cardiovascular (CV)
mortality (Nissen and Wolski, 2007). Some meta-analyses confirmed the original findings (Singh et al.,
2007), whereas others reported inconclusive findings (Diamond et al., 2007).

After the publication of the meta-analysis conducted by Nissen and Wolski (2007), numerous
scientists carried out their own analyses, in order to assess the ‘true’ effect of Rosiglitazone with
respect to the occurrence of MI and CV deaths, including the meta-analyses of Home et al. (2007),
Bracken (2007), Diamond et al. (2007), Shuster et al. (2007), Dahabreh (2008), Tian et al. (2009),
Friedrich et al. (2009), Mannucci et al. (2009) and Cai et al. (2010).
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As been pointed out in Kaul and Diamond (2011), one issue of this debate is whether trials with
zero events should be excluded from the analysis and what biasing effect this exclusion would have.
We will argue here that, at least from a statistical perspective, such exclusions can and should be avoided
if the available statistical repertoire is used appropriately.

The standard approach to meta-analysis assumes that an estimate of the effect measure of interest
is available from each study together with an estimate of its variance that is then typically treated as a
known parameter. In the standard approach, it is further assumed that the effect measure is normally
distributed within studies and all further investigations, such as heterogeneity modelling, build on these
assumptions. This approach is reviewed in Stijnen et al. (2010) and it is pointed out that the approach
has several shortcomings when the effect-measure involves count data and therefore is very relevant
here. Instead, Stijnen et al. (2010) highlight the benefits that occur when exact methods, reflecting the
count nature of the data involved in the meta-analysis, are used. They point out that the bias in the
standard approach, caused by the correlation between estimate and standard error, can be avoided. As
a second benefit, the use of a more appropriate within-study likelihood incorporates the uncertainty
in the estimates of the standard errors and, hence, provides a more realistic approach. In addition, it
avoids the use of continuity corrections. This point is most relevant for meta-analysis of studies with
many single-zero (SZ) or double-zero (DZ) studies, where the study-specific effect measure itself, the
risk ratio say, would not be estimable without the use of a continuity correction. This is crucial for the
standard approach since it builds on study-specific effect measures. Here, very much in the spirit of
the approach taken by Stijnen et al. (2010), we focus on alternative approaches that avoid the use of
continuity corrections.

The paper is organised as follows. In Section 3, we will focus on Mantel-Haenszel (MH) methodol-
ogy, which has the property of being robust with respect to the occurrence of zero events, whereas in
Section 4, we focus on Poisson modelling. In particular, we demonstrate that the question of homo-
geneity of effect can be investigated using a random effect for the study factor. In addition, we mention
zero-inflation modelling as an option to check whether a large number of zeros in the meta-analytic
data would require a zero-inflation component. The paper ends with a short discussion.

2 Data

Recently, Nissen and Wolski (2010) published a second meta-analysis on Rosiglitazone, including 56
trials with in total 35,531 patients. The inclusion criterion for a trial was a duration of at least 24 weeks.
Their current findings suggest an increase in risk ratio for Rosiglitazone, as the Rosiglitazone therapy
significantly increased the risk of MI, but not CV mortality. We take this data set as the most complete
data basis and all our analysis is grounded on the data reproduced in Tables 1 and 2. Note that the
trials differ in observation time, ranging from 24 to 260 weeks. Hence, the person-time (= size of trial
x duration) differs across trials and this needs to be taken into account.

Forest plots for MI events and CV events are provided in Figs. 1 and 2, respectively, using the package
STATA. These not only show the distribution of the risk ratio across studies, they also illuminate how
many studies have been excluded by STATA for the analysis due to zero events.

3 Mantel-Haenszel techniques

Let x/ and x¢ denote the number of events (CV or MI) in the treatment and in the control arms,
respectively, of the i-th trial. Further denote by P! and P¢ the person-time in the treatment and in the

control arms, respectively, of the i-th trial. Also, let x” = Zf;l x! denote the total number of events in
the k trials for the treatment arm with similar definitions for x¢, P”, and P€. Then the crude risk ratio
is simply RR = 1(' ,IZ; that relates the estimated overall risk x” /P7 in the treatment arm to the estimated
overall risk x¢/P€ in the control arm. The calculation of the crude risk ratio is straightforward unless
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Table 1 Study data for the meta-analysis on rare events in the Rosiglitazone and control arms; MI
refers to myocardial infarction events, CV to cardiovascular deaths, 7 is the size and P is the person-time
of the respective study arm and ‘duration’ refers to the study period at risk (in weeks).

ID  Study label Treatment arm Control arm Duration
n P MI CV =n P MI CV
1 49653/011 176 4224 0 0 357 8568 2 1 24
2 49653/020 207 10,764 1 0 391 20332 2 0 52
3 496537024 185 4810 1 0 774 20,124 1 0 26
4 49653/093 109 2834 1 0 213 5538 0 0 26
5 496537094 116 3016 0 0 232 6032 1 1 26
6 100684 47 2444 1 0 43 2236 0 0 52
7 49653/143 124 2976 0 0 121 2904 1 0 24
8 49653/211 114 5928 2 4 110 5720 5 5 52
9 49653/284 384 9216 0 0 382 9168 1 0 24
10 7127537008 135 6480 0 0 284 13,632 1 0 48
11 AVMI100264 302 15,704 1 1 294 15,288 0 2 52
12 BRL49653C/185 142 4544 0 0 563 18,016 2 0 32
13 BRL49653C/334 279 14,508 1 1 278 14456 2 0 52
14  BRL49653C/337 212 5088 0 0 418 10,032 2 0 24
15 49653/015 198 4752 1 0 395 9480 2 2 24
16  49653/079 106 2756 1 1 203 5278 1 1 26
17 49653/080 99 15444 2 0 104 16,224 1 0 156
18  49653/082 107 2782 0 0 212 5512 2 1 26
19 49653/085 139 3614 1 0 138 3588 3 1 26
20 496537095 96 2496 0 0 196 5096 0 1 26
21 49653/097 120 18,720 1 0 122 19,032 0 0 156
22 49653/125 173 4498 1 0 175 4550 0 0 26
23 49653/127 58 1508 0 0 56 1456 1 0 26
24 49653/128 38 1064 0 0 39 1092 1 0 28
25  49653/134 276 7728 2 0 561 15,708 0 1 28
26 49653/135 111 11,544 3 1 116 12,064 2 2 104
27 49653/136 143 3718 0 0 148 3848 1 2 26
28  49653/145 242 6292 0 0 231 6006 1 1 26
29 49653/147 88 2288 0 0 89 2314 1 0 26
30 49653/162 172 4472 0 0 168 4368 1 1 26
Continued in Table 2
xT or x© is zero, a situation that can be excluded in nearly all practical cases and, in particular, for the

meta-analysis at hand.

However, it is important in any meta-analysis to investigate the factor study as a potential confound-
ing factor and one way to do this is to stratify. Calculation of a weighted estimator with weights being
calculated on the basis of the inverse variance is almost impossible for at least two reasons. First, the

xT' p€

calculation of the study-specific risk ratio ﬁ, = —epr 1s prohibited if zero events occur, and second,

i

the variance of FI\QZ- is difficult to compute reasonably accurately and the existing estimator, based on
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Table 2 Study data for the meta-analysis on rare events in the Rosiglitazone and control arms
(continued from Table 1).

ID  Study label Treatment arm Control arm Duration
n P MI CV =n P MI CV
31 49653/234 61 1586 0 0 116 3016 O 0 26
32 49653/330 377 19,604 0 0 1172 60,944 1 1 52
33 49653/331 325 16,900 0 0 706 36,712 0 1 52
34 49653/137 185 5920 2 1 204 6528 1 0 32
35 SB-712753/002 280 6720 0 0 288 6912 1 1 24
36 SB-712753/003 272 8704 0 0 254 8128 1 0 32
37  SB-712753/007 154 4928 0 0 314 10048 1 0 32
38  SB-712753/009 160 3840 0 0 162 3888 0 0 24
39 49653/132 112 2688 0 0 442 10,608 1 1 24
40  AVA100193 124 2976 0 0 394 9456 1 1 24
41  AVDI102209 131 10,218 0 1 132 10,296 0 0 78
42 AVDI104742 213 5538 0 0 160 4160 0 0 26
43 AVDI100521 337 9436 7 3 331 9268 8 4 28
44  AVA105640 250 6500 1 1 331 8606 1 0 26
45  ARA102198 49 1176 0 0 49 1176 0 0 24
46  49653/044 51 1326 0 0 101 2626 0 0 26
47  49653/096 115 2990 0 0 232 6032 0 0 26
48  49653/109 25 650 0 0 52 1352 0 0 26
49  49653/325 195 4680 0 0 196 4704 0 0 24
50  49653/282 75 1800 0 0 70 1680 0 0 24
51  49653/351 29 1508 0 0 28 1456 0 0 52
52 49653/369 24 624 0 0 25 650 0 0 26
53 49653/452 24 576 0 0 26 624 0 0 24
54 DREAM 2634 410,904 9 10 2635 411,060 15 12 156
55 ADOPTI9 2895 602,160 41 5 1456 302,848 27 2 208
56 RECORD 2227 579,020 56 71 2220 577,200 64 60 260

the §-method and treating the estimated weights as non-random, becomes an unstable estimator when
zero events occur (Bohning and Sarol, 2000). This problem could be addressed by using continuity
corrections (adding a constant to all cells, as suggested in Jewell (2004, p. 80) ) as in Kaul and Dia-
mond (2011), but these corrections often add bias of unclear size and direction. See also the debate
on adding something to nothing in Sweeting et al. (2004), Ricker et al. (2009), Shuster et al. (2007)
and Friedrich et al. (2009). Furthermore, Bhaumik et al. (2012) show that, if a continuity correction is
used, a constant value of % removes the first-order bias.

Fortunately, the need to estimate study-specific risk ratios is unnecessary with MH methods. The
beauty of MH methods can be seen in the fact that they follow the rule sums before ratios, which leads
to their celebrated robustness properties. The MH estimate of relative risk (Clayton and Hills, 1993;
Jewell, 2005) is

- S.xI'Pe/pP.
RRyH = W, ey
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Study %
ID RR (95% Cl) Weight
49653/011 I —e 2,47 (0.12,51.22) 0.48
49653/020 * 1.06 (0.10, 11.61) 0.93
49653/024 * - 0.24 (0.02, 3.80) 1.15
49653/093 * + 0.17 (0.01, 4.17) 1.41
49653/094 : *> 1.51 (0.06, 36.70) 0.47
100684 * T 0.36 (0.02, 8.70) 1.02
49653/143 —e 3.07 (0.13, 74.72) 0.35
49653/211 B L — 2.59 (0.51, 13.08) 1.40
49653/284 * 3.02(0.12, 73.80) 0.35
712753/008 le 1.43(0.06, 34.91) 0.48
AVM100264 * T 0.34 (0.01, 8.37) 1.05
BRL49653C/185 * 1.27 (0.06, 26.26) 0.57
BRL49653C/334 — 2.01(0.18, 22.01) 0.71
BRL49653C/337 . 2,54 (0.12, 52.71) 0.47
49653/015 1 1.00 (0.09, 10.99) 0.95
49653/079 *—1 0.52 (0.03, 8.27) 0.93
49653/080 - 0.48 (0.04, 5.17) 1.46
49653/082 —e 2.54 (0.12, 52.34) 047
49653/085 * 3.02 (0.32, 28.69) 0.71
49653/097 - . 0.33 (0.01, 7.97) 1.08
49653/125 * - 0.33(0.01, 8.03) 1.07
49653/127 —e 3.11(0.13, 74.66) 0.35
49653/128 — 2,92 (0.12, 69.64) 0.36
49653/134 * 0.10 (0.00, 2.05) 2.38
49653/135 —_— 0.64 (0.11, 3.75) 218
49653/136 — 2,90 (0.12, 70.59) 0.36
49653/145 —e 3.14 (0.13, 76.74) 0.35
49653/147 — 2,97 (0.12, 71.85) 0.36
49653/162 —e 3.07 (0.13, 74.86) 0.35
49653/330 - 0.97 (0.04, 23.68) 0.54
49653/137 * 0.45 (0.04, 4.96) 1.49
SB-712753/002 L—e 2.92(0.12, 71.30) 0.36
SB-712753/003 — 3.21(0.13, 78.48) 0.34
SB-712753/007 - 1.48 (0.06, 36.03) 0.48
49653/132 >~ 0.77 (0.03, 18.66) 0.57
AVA100193 0.95 (0.04, 23.16) 0.54
AVD100521 —_— 1.16 (0.43, 3.17) 494
AVA105640 >~ 0.76 (0.05, 12.02) 0.81
DREAM —— 1.67 (0.73, 3.80) 6.41
ADOPT19 —— 1.31(0.81,2.12) 19.53
RECORD —— 1.15 (0.80, 1.63) 39.79
Overall (I-squared = 0.0%, p = 1.000) O 1.21(0.97, 1.51) 100.00

Figure 1 Forest plot for the risk ratio of M1 events; 15 DZ trials had to be excluded for the construction
of this plot.

where P, = PC + P”. Note that RRy is only undefined when x” or x€ is zero. It also can be viewed as

a weighted sum Z”—RR of the RR;s with weights w, = x¢ P7 /P,. We point out that the computational
>ow, i i it i

form to be actually’ used is given by (1) since the weighted version would remove any study with at
least one arm having zero events.

Table 3 provides the analysis for MI and CV mortality. We have used the package STATA with more
details given in the Supporting Information. For MI, we see a slight confounding (masking) effect
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Study %
ID RR (95% Cl) Weight
49653/011 * 1.48 (0.06, 36.23) 0.61
49653/094 - 1.51 (0.06, 36.70) 0.60
49653/211 —_— 1.30 (0.36,4.70)  3.56
AVM100264 * 2.05(0.19, 22.54) 0.89
BRL49653C/334 - 0.33(0.01,8.18) 1.36
49653/015 * 2.51(0.12, 52.09) 0.60
49653/079 . 0.52(0.03,8.27) 1.19
49653/082 * 1.52 (0.06, 37.03) 0.60
49653/085 * 3.02(0.12,73.54) 0.45
49653/095 - 1.48 (0.06, 35.93) 0.61
49653/134 * 1.48 (0.06, 36.18) 0.61
49653/135 * 1.91(0.18,20.81) 0.93
49653/136 * 4.83(0.23,99.78) 0.46
49653/145 - 3.14(0.13,76.74) 0.44
49653/162 * 3.07 (0.13, 74.86) 0.45
49653/330 0.97 (0.04, 23.68) 0.69
49653/331 * 1.38 (0.06, 33.87) 0.62
49653/137 * 0.30(0.01,7.38) 1.43
SB-712753/002 * 2.92(0.12,71.30) 0.46
49653/132 * 0.77 (0.03, 18.66) 0.72
AVA100193 0.95 (0.04, 23.16) 0.69
AVD102209 * 0.33(0.01,8.05) 1.37
AVD100521 —_—t— 1.36 (0.31,6.02) 2.70
AVA105640 * 0.25(0.01,6.16)  1.55
DREAM —_— 1.20(0.52,277) 9.07
ADOPT19 —_— 0.80 (0.15,4.09) 3.04
RECORD —— 0.85(0.60, 1.19)  64.30
Overall (I-squared = 0.0%, p = 1.000) <r 0.99 (0.76,1.28)  100.00
I I I
A 1 10

Figure 2 Forest plot for the risk ratio of CV deaths; 29 DZ trials had to be excluded for the construc-
tion of this plot.

making the MH estimate borderline significant. For CV there is a more pronounced confounding
(inflation) effect leading to non-significant MH estimate, only slightly above the null effect.

One of the benefits of using the MH estimate is that we can clearly see the effect of includ-
ing/excluding SZ or DZ trials. Note that zero events will not change the denominator or numerator in
the MH estimate. Hence, in the case of a DZ trial, neither denominator or numerator will be affected
by the exclusion or inclusion of the trial. In the case of a SZ trial, the numerator or denominator of the
MH estimate will be affected depending in which arm the non-zero event occurs. Hence, the estimator
might experience bias if SZ trials are excluded. Hence, we argue here to include a/l trials, SZ and DZ
trials, in the estimation. This is also in line with other evidence, for example in Friedrich et al. (2007) or
Bhaumik et al. (2012). In addition, it might be argued on ethical grounds that patients have the right
to have their data stemming from zero trials entered into the meta-analysis (Keus et al., 2009). We also
investigate in Table 3 the effect of excluding zero studies from the analysis on the MH estimate. As
expected, there is no effect of excluding DZ studies on the MH estimate of the risk ratio. More serious
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Table 3 MH estimate, deﬁned 1n (1), in the rare events meta-analysis of Rosiglitazone and the crude

risk estimate given as RR = TpT PT, the effect of excluding DZ and SZ studies on the MH estimate;
number of studies included is glven in brackets in the first column.

Method Estimate Confidence interval p-Value
MI
Crude(56) 1.2561 0.9928-1.5911 0.0504
MH(56) 1.2782 1.0125-1.6137 0.0390
DZ(41) 1.2782 1.0125-1.6137 0.0390
SZ(15) 1.2097 0.9489-1.5422 0.1244
Cv
Crude(56) 1.1281 0.8496-1.4987 0.4051
MH(56) 1.0257 0.7760-1.3557 0.8585
DZ(27) 1.0257 0.7760-1.3557 0.8585
SZ(8) 0.9374 0.7015-1.2526 0.6620

are the effects when SZ trials are excluded. In the case of MI events, the significance of the effect is lost
and in the case of CV events, the effect, although not significant, changes from harmful to protective.
In summary, in the case of a DZ trial, the MH estimate does not change in either direction, which
seems to be a desirable property as there is no evidence in a DZ trial of benefit in either the treatment
or control arms. In the case of a SZ trial, the MH-estimate changes in favour of treatment or control
depending where the non-zero event occurs.

The major difficulty in MH estimation with rare events, however, lies in investigating homogeneity of
effect. There exists a x’-test of homogeneity which, unfortunately, requires both stable study-specific
effect estimates and stable study-specific variance estimates of the study effects. Hence, the available
x>-test of homogeneity is of unknown behaviour even if infeasible study-specific effect estimates are
omitted. In the following, we present a modelling approach based on random effects, which allows the
homogeneity of effect to be investigated in a straightforward way.

4 Poisson regression

It was seen in the previous section that MH estimation provides a simple and powerful tool for adjusting
the risk ratio for the potentially confounding study factor. In this section, we turn to regression models
as these can incorporate additional co-variates as fixed and/or random effects. This will also allow a
more satisfying way of dealing with effect heterogeneity. The major idea of Poisson modelling is to
consider the count of events X as a Poisson distributed variable with mean E(X) = uP (Breslow and
Day, 1987; Clayton and Hills, 1993). Evidently, ,u E(X)/P is the incidence rate. We have that for
each trial / and each treatment arm j, E(X;;) = u;P,;, where now j = I means being on the treatment
arm and j = 0 otherwise. Hence, the risk ratio 1s RR /- Taking logarithms yields the basic
log-linear model.

log E(X;;) =logP;; +logp; =logP;; + o+ B x J, (2)

where often the notation g for the log-risk ratio is used and « is the baseline risk. Note that the model
allows non-identical within-trial person-times. This is a slightly more general formulation of the model
than necessary for the data set at hand, but we leave it this way for the sake of generality. Parameter
estimates are found by maximising the associated Poisson likelihood. Since the basic model does not
involve study as a factor, the maximum likelihood estimate of 8 corresponds to the crude log-risk ratio.
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Model (2) has one peculiarity in that it involves the logarithmic person-times log P; as an offset.
An offset represent co-variate information with a fixed parameter of 1 attached to it. Most statistical
packages, including STATA, the package we use in our analyses, have options to include an offset. More
details are given in the Supporting Information.

4.1 Poisson regression and random study effect

Clearly, model (2) suffers from the fact that the factor study is ignored. This can be easily modified to
include the study effect as

log E(X;;) = log P;; +logp;; =1og P,; +a; + B; x J. 3)

Model (3) not only allows different study-specific baseline risks «;, but also study-specific log-risk
ratios ;. Assuming §; = g for all i leads to an estimate of 8 that is equivalent to the MH analysis. Let
n; = E(X;), s0 that the Poisson likelihood becomes for the common effect model

[T PotxIni) =[] [PotxiolPyexp(e)) x Po(x; | Py exp(e; + B))]. )
i J i

where the Po(x|n)) = exp(—n)n*/x! are Poisson probabilities. In this likelihood (4), study occurs as a
fixed effect. However, it is a common understanding that in this situation szudy should be a random
effect. This means that ¢; is not considered as a fixed but unknown parameter. Instead it is assumed
to be random quantity, here as normal with unknown mean o and unknown variance o2. In this case,
likelihood becomes

l_[/ [Po(x,y| Py exp(et;)) x Po(x;| Py exp(e; + )] ¢ (e ler, 0f)der;, %)

where ¢ (|, aj) denotes the probability density of a normal random variable with mean o and
standard deviation o,,. Note that the order of products in (5) is no longer exchangeable and, hence, this
better reflects the split-plot character of the data (treatment varies only within study). This approach
is preferred for the following reasons:

(1) It avoids the so-called Neyman—Scott problem, meaning that there could arise a consistency
problem since the number of parameters in the , is connected to the number of studies. Hence,
the number of parameters will increase with the number of studies. The random effect approach
avoids this (only one variance parameter throughout) and it is possible to estimate the random
effects distribution consistently (Kiefer and Wolfowitz, 1956).

(i1) Finally, considering study as a fixed effect could lead to unstable parameter estimates, as is the
case here because of the rare event nature of the data.

Another benefit of this approach is that it may easily be generalised to include a random effect for
the log-risk ratio, 8, ~ N (8, aé), again a mean 8 normal distribution with variance aﬁ. The likelihood
then becomes

H/Po(xl-o|PiO exp(a,)) x [/ Po(x;|P, exp(a,.+,3,))¢(/3,.|ﬁ,a§)d,3,] ¢(olar, 0F)de;.  (6)

The integrals are usually approximated by Hermite—Gaussian quadrature (Aitkin, 1999), but other
techniques including the Laplacian approximation are available as well. For more details on compu-
tation with the software STATA see the Supporting Information. The likelihoods (4), (5) and (6) can
be used in likelihood ratio testing of whether random effects are necessary and whether they should
involve a random intercept or a random slope or both forms. We exemplify these ideas in the following.
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Table 4 Poisson regression estimates in the rare events meta-analysis of Rosiglitazone; log-L stands
for the maximised log-likelihood under the respective model; o> and oé refer to the variance of the
random intercept and random slope, respectively.

Poisson model Estimate Confidence interval log-L

MI
Treatment 1.2561 0.9991-1.5793 —174.2054
Treatment 1.2634 1.0006-1.5952 —137.9566
o’ 0.6352 0.3213-1.2559
Treatment 1.2634 1.0006-1.5952 —137.9566
o2 0.6352 0.3213-1.2559
aé 0.

Cv
Treatment 1.1281 0.8579-1.4835 —172.0216
Treatment 1.0192 0.7737-1.3426 —100.3147
o2 1.2328 0.5908-2.5723
Treatment 1.0192 0.7737-1.3426 —100.3147
o2 1.2328 0.5908-2.5723
oé 0.

The results of the analysis are provided in Table 4. For both MI and CV, we see that a random study
effect for the intercept is needed, but the random effect for the log relative risk, as estimated by ag,
is virtually zero in both cases. Note that also a more formal evaluation of models is possible using
the likelihood ratio test (LRT). If log-L, and log-L,, are the maximised log-likelihoods associated with
two models, M, and M,,, under consideration, then the test statistic of the LRT is given as log-L,
assuming that model M|, is nested in model M, (M, occurs as a special case of M ). Note that roles of
M, and M, change when applied to Table 4 as the three models are nested in increasing order. Under
M,, this test statistic is approximately distributed as x> where the degrees of freedom are determined
as the difference of the number of parameters involved in M, and M. As a cautionary note, we add
that the conventional asymptotic x? result is only valid under the assumption that M, is not on the
boundary of M,. However, this assumption is violated when testing M|, : 6> = 0 against M, : 5> > 0.
In this case, the null distribution of the likelihood ratio statistic is 4 x¢ + 4 x7 (Self and Liang, 1987),
where 7 is the one-point distribution at 0. In practice this means that ordinary p-values have to be
divided by 2 to get the correct asymptotic p-values. Applying this test to the log-likelihood values in
Table 4, we confirm that the LRT for comparing the random intercept with the fixed intercept model
is highly significant, whereas the LRT comparing the random intercept and random slope model with
the random intercept-only model is non-significant (the log-likelihoods are virtually identical). We
conclude that there is a homogeneous treatment effect that is borderline significant for M1, but not
significant for CV mortality.

In Table 5 we investigate, on the basis of model (5), the effect of excluding zero studies from the
analysis. As expected, the effect of excluding DZ studies on the risk ratio is rather minor with almost
negligible impact on standard errors and confidence intervals, at least as far as MI events are concerned,
but with slightly more change for CV events. More serious are the effects when SZ trials are excluded.
It can be seen in Table 5 that, for MI events, the borderline significance is lost, with a confidence
interval now clearly including the reference value. But also for CV events, there is an interesting
change: although not significant, the effect crosses the reference value and becomes protective. Hence,
great care must be taken when excluding zero trials and ideally such exclusions should be avoided.
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Table 5 Poisson random effects regression estimates of the risk ratio in the rare events meta-analysis
of Rosiglitazone: the effect of excluding DZ and SZ studies and none excluded (NONE); number of
studies included is given in brackets in the first column.

Zero studies (k) RR estimate SE Z p-Value 95% ClI

MI
NONE(56) 1.2633 0.1503 1.96 0.049 1.0006-1.5952
DZ(41) 1.2634 0.1503 1.97 0.049 1.0008-1.5955
SZ(15) 1.2101 0.1512 1.53 0.127 0.9473-1.5458

Ccv
NONE(56) 1.0193 0.1433 0.14 0.892 0.7738-1.3426
DZ(27) 1.0246 0.1441 0.17 0.863 0.7778-1.3497
SZ(8) 0.9427 0.1395 -0.40 0.690 0.7054-1.2599

We mention briefly that the Poisson regression model with random intercept and random slope
can be extended to allow correlation between these two random effects. The associated likelihood is
provided as

I [ [ Potsolpyexp@p) x Pot By expia, + o o 5 2)} dpda,. )

where ¢(«;, B;l, B, X) is the bivariate normal density with mean vector elements « and B, and
covariance matrix ¥ with elements o2, aé on the diagonal and covariance o,, 4. This model can be also
fitted in STATA although we have not done so here since already the independence model showed that
the random slope effect does not yield any significant increase in the likelihood.

4.2 Zero-inflation models

We have seen above that more than 50% of the trials involved in the meta-analysis have zero events
in at least one arm. Dealing with count data in which there are many zero counts leads naturally
to the question whether these represent an excess of zero counts relative to the Poisson model. An
excess in zero counts is also called zero inflation. Zero-inflated Poisson (ZIP) models have become
an accepted methodology to cope with excess zeros. The original work by Lambert (1992) suggests a
way of modelling count data with excess zeros as follows. It is assumed that there is a compartment
that generates only zero counts and which occurs with probability «. Furthermore, it is assumed
that outside this compartment the regular Poisson model holds. This occurs with probability (1 — «),
evidently. Hence we have the following ZIP model, adapted to our situation

PriX;; = 0] = m;; + (1 —m)e ™, ®)
Pr[X,-jzx]z (l—nij)Po(me) forx=1,2,..., 9)

where i is the trial number index and j = 0, 1 indicates the trial arm — as before. The Poisson part
Po(x[n;;) of (9) is modelled as previously. A feature of the Lambert model that the excess zero part is
modelled by means of a logistic regression approach that leads to

logn;; =log P,; +logp;; = log P;; + a + B x J, (10)

logit 7;; = logm;; — log(1 — ;) = o' + B' x ji. (1D)
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Table 6 ZIP regression estimates in the rare events meta-analysis of Rosiglitazone; log-L stands for
the maximised log-likelihood.

Model Estimate Confidence interval log-L

MI

— ZIP model with treatment effect in both logistic and Poisson parts — —174.1394
Poisson part

exp(B) 1.2685 1.0034 to 1.6036
Logistic part

B 11.9924 —2739.2 t0 2763.2

— ZIP model with treatment effect only in Poisson part — —174.1943
Poisson part

exp(B) 1.2600 0.9987 to 1.5895

— Logistic part has constant zero inflation with 7 = 0.0060 —

— Standard (no zero inflation) Poisson model — —174.2054

exp(B) 1.2561 0.9991 to 1.5793

Ccv

— ZIP model with treatment effect in both logistic and Poisson parts — —171.7274
Poisson part

exp(B) 1.0953 0.8257 to 1.4530
Logistic part

B -16.3474 —-12095 to 12063.

— ZIP model with treatment effect only in Poisson part — —171.9951
Poisson part

exp(B) 1.1310 0.8588 to 1.4894

— Logistic part has constant zero inflation with 7 = 0.0287 —

— Standard (no zero inflation) Poisson model — —172.0216

exp(B) 1.1281 0.8579 to 1.4835

In this formulation (10) and (11) have the same co-variates occurring, though this is not a requirement.
Different co-variates may occur in (10) and (11). Note that here 8 is a log-relative risk, whereas g’
is a log-odds ratio. The ZIP regression models are easy to fit and are available in many packages,
including STATA. Note that there is no offset term in (11). Although this is technically possible it is
rarely meaningful for the logistic part of the ZIP model. Although it is reasonable to assume that the
average count of cases is linearly related to the amount of person-time, it is not plausible to assume
that the probability of an extra zero count is linearly related to the person-time. STATA offers an offset
term for both parts of (10) and (11), so it is important to see that the offset term is only appropriate
for (10).

We have applied ZIP modelling to the meta-analytic data at hand and the results are shown in
Table 6. The conventional Poisson regression model is compared with the ZIP model, where there is
constant zero inflation as well as assuming a treatment effect in the logistic part. Note that we have
included the estimate of the proportion of extra zeros in Table 6 in the case of constant inflation. On the
basis of the LRT, neither of the two comparisons is significant for either endpoint. We conclude that,
although the data contain many zeros, these are compatible with the conventional Poisson regression
model. Finally, we address the question how a random effect could be supplemented to the ZIP
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regression model. This can be accomplished by allowing ¢, to be a normal mean o random-effect with

variance o2, o; ~ N (e, 02), and, if desired, by allowing o/ ~ N (e, 62):
logn;; =log P,; +logp;; = log P;; + o; + B x J, (12)
logit 7,; = log7;; — log(l — 7;,) = &/ + B} X J, (13)

where 7 is the trial number index and j = 0, 1 indicates the trial arm — as before. This is more for
completeness than for reasons of necessity in this case, since there is no evidence of any zero inflation.
The model of interest for our case would be the Poisson regression part with random intercept
effect supplemented by constant zero inflation, n;; =, forall studies i and both arms j = 0, 1. The
associated likelihood is given by

]_[/ I1 [So{x,-j}n + (1 = ) Po(x,,|P, exple; + B xj))] b(a ], 02)da,, (14)

j=0,1

where ¢ (a;|a, 62) denotes the probability density of a normal random variable with mean o and stan-
dard deviation o, and §,{x;;} = 1 if x;; = 0 and 0 otherwise. Unfortunately, there is no computational
way that this model can be fitted in STATA. However, it is possible to fit the models (12) and (13) with
proc nlmixed in SAS (SAS Institute, Inc., 2008). We provide details in the Supporting Information. For
our case, we only consider testing the Poisson part of the ZIP model with constant inflation against the
ZIP model where the Poisson part is supplemented by a random intercept effect. Not surprisingly, the
LRT is not significant, neither for MI events nor for CV events; in fact, both likelihoods are virtually
identical. In the Supporting Information, we also provide the associated versions of proc nlmixed
that would fit models (12) and (13) simultaneously.

5 Discussion

We have seen that MH techniques and Poisson regression with random effects lead to almost identical
results. The benefit of using a Poisson model approach lies in its ability to include additional co-variates
although in our case no further co-variates were available. While we are interested primarily in the
treatment effect, the Poisson model also captures variation in the baseline event risks, which is most
visible in the random effects intercept variance o2, a term that showed up significantly for both, MI
and CV events. Hence, there is considerable baseline risk variation across trials.

Another question relates to the issue of interpretation of the observed risk ratio estimate of 1.27 for
MI events. We recall that the risk ratio is only one effect measure among others, but a very popular
one. Also, it is a relative measure as it ignores the baseline risk. As one may say, a risk ratio of 100 leads
also to zero cases if the baseline risk is negligible. For the choice of outcome measure, see also Arends
et al. (2003) for more. In contrast, absolute effect measures such as the risk difference incorporate the
size of the baseline risk and neither SZ nor DZ studies create any problems in the estimation process.
A large number of DZ studies would only put a lot of weight on the no effect. Figure 3 shows bubble
plots for CV death and MI event rates. Note that the three larger studies have bubbles centred above
zero for MI events, whereas they balance on zero for CV deaths. In addition, the risk difference might
be used to arrive at more interpretable numbers of cases to be expected under the given scenario.
For example, we find a risk difference estimate for MI events of 0.0019 (using now a risk estimate as
number of cases divided by number at risk), which corresponds to a number needed to treat (NNT)
of 531. This means that, on average, 531 persons need to be treated to have one additional case. This
seems to be a considerable number, depending on how widespread the use of the drug is. In any case,
all previous meta-analyses on this issue concentrated on relative risk as we have done here.

Clearly, we find it important to include duration of the studies as an important component in the
modelling, as the longer the follow-up of the study, the more events can be expected. This has been
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Figure 3 Bubble plot for the risk differences in the rates for MI events and CV deaths; bubble area is
proportional to size of study (some smaller bubbles are not perfectly ball-shaped due to the discreteness
of the approximation); the study index refers to the ID given in Tables 1 and 2 and the order of studies
is the same as in Figures 1 and 2 although DZ studies were excluded in the latter two.

widely ignored in previous analyses. This leads naturally to the concept of incidence rate, sometimes
also known as incidence density, x! /P! and x¢/P¢, in trial i for the treatment and control arm,
respectively. Often the emphasis has been on odds ratio analysis (Tian et al., 2009). For the situation
here, we find the concept of incidence rate more appropriate since it accounts for different trial duration.
Odds ratio modelling might be more appropriate in situations of meta-analysis where different study
types occur, such as case—control studies as well as cohort studies or clinical trials. Here, the odds ratio
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as effect measure would be more appropriate as it can be estimated on the basis of all these study
designs. Odds ratio modelling leads naturally to logistic regression

logit p;; = o; + B x J,

where p;; is the probability for an event in study 7 in the j-th treatment arm. Also, &; = o might be a
fixed effect or a random effect o; ~ N (e, 02) as before. Ignoring the varying duration time and only
considering the frequency of events and no events, we find an estimated odds ratio of 1.0088 with 95%
confidence interval 0.7633 — 1.3332 for CV events and an odds ratio of 1.2538 with 95% confidence
interval 0.9904 — 1.5872. These results are very close to the results from the Poisson random effects
modelling in Table 4. An explanation for this similarity might be the highly balanced nature of the
trials in the sense that all trial arms have the same duration (although duration varies across trials).
Logistic regression models with random effects can be easily fitted with STATA.

Another, elegant way of involving logistic regression is mentioned in Stijnen et al. (2010). The basic
idea is to consider X;; conditional on X; = X;; 4+ X,,. Since E(X;;) = u, P, and E(X,)) = Py, X;, is
binomial with size parameter X; and event parameter

RR,-1
_ w1 Py _ P
= P Py o P
mfi + ol pr it 4
Py

This is remarkable for two reasons. For one, the event parameter involves only the parameter of
interest RR,. Furthermore, notice that its functional form makes it really prone to logistic regression.
Indeed,

: ~ P P
logit ¢; = log % = log RR; + log P—'l = o, + log P—’l
i i0 i0

where the RHS of the above equation can be used for further modelling, such as «; = « (a common
risk ratio across studies) or o; ~ N (e, 02) (a random effect for the risk ratio). Note this model does not
involve a treatment effect as we are used to with the models above, but rather the risk ratio estimation
and modelling works on the intercept in this case. A disadvantage of the approach is that it has to
exclude all DZ studies. Again, these models can easily be fitted with STATA.

Returning now to the Poisson regression model, we have seen that another benefit of the Poisson
regression model is that it may easily be extended to allow for zero inflation and the fundamental model
has been suggested by Lambert (1992). The basic ZIP model of Lambert adjusts for over-dispersion
that arises solely from the occurrence of extra zeros. Generalisations have been made more recently to
account for residual over-dispersion stemming from the non-zero part of the count distribution. One
of these is the zero-inflated negative binomial model that has received much attention (Hilbe, 2011).
Another generalisation is to replace in the logistic part the logistic link function by other appropriate
links, such as the probit link (offered also by STATA). In principle, any other cumulative distribution
function may be applied here to specify the link function. ZIP models are easy to interpret and they
can lead to more refined data analysis. More on zero-inflation models can be found in Lambert (1992),
Cameron and Trivedi (1998), Winkelmann (2003) or Zelterman (2006).
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