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ABSTRACT 

Chronic periodontitis is one of the most common oral diseases in the world affecting 11.2% 

globally and 26% among Thai adults. Symptoms are negligible until it is too late and results in loss of 

tooth and quality of life. To diagnose chronic periodontitis, a chairside examination by a dentist or an oral 

hygienist is required. The process is time and resource-consuming, so a screening model to identify the 

risk of having chronic periodontitis in an examinee can be of assistance in reducing workload for the 

examiners.  

Cross-sectional regression models are commonly applied using relevant demographic or 

risk behaviors as predictors. While logistic regression models are simple to apply or to interpret, their 

performance can be less optimal depending on feature selection and engineering. Machine learning 

models recently have been increasingly applied in medical and health-related fields due to their more 

complex yet powerful performances and their ability to handle high dimensional data as well as 

unstructured data.  

In this study, screening models were applied such as mixed-effects logistic regression 

(MELR), recurrent neural networks (RNN), and mixed-effects support vector machine (MESVM). Using 

the Electric Generation Authority of Thailand (EGAT) cohort 2nd survey, the models were trained upon 

longitudinal data. Hyperparameters optimization is done for RNN and MESVM applying random-search 

followed by grid-search procedures. All models are evaluated with the same metrics; sensitivity, 

specificity, accuracy, positive likelihood ratio, positive prevalence value, negative prevalence value, Brier 

score, and F1 score to address class imbalance problems. It was observed that the MELR model (90.5% 

accuracy) performed better than the machine learning models (70.0% accuracy for RNN and 72.7% for 

MESVM).  

IMPLICATIONS OF THE THESIS 

Trained models could be applied in large-scale screening in a community such as public 

health missions as well as electronic health records after the models have been validated with external 

datasets to acceptable performances. 
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1.  

CHAPTER I 

BACKGROUND AND RATIONALE 

 

 

1.1 Background and Rationale 

Periodontitis is one of the most common oral diseases and causes of tooth 

loss in adults.1 It is the world’s 6th most prevalent oral disease, affected around 743 

million people worldwide. The prevalence was at 11.2% globally, and 15.0-20.0% of 

Asians.2 According to the 8th Thailand national oral health survey (2017), the prevalence 

of periodontitis in Thai adults was 26%, and for the elderly was 36%. Periodontitis is a 

complex inflammatory disease that leads to the destruction of the supporting structures 

around the tooth, resulting in the loosening of the teeth and eventual tooth loss.3 This 

leads to decreased occlusal ability, digestive ability, and effectively the patient’s quality 

of life. 

In addition to oral manifestations, previous studies found an association of 

chronic periodontitis with systemic diseases and conditions.4 The association between 

atherosclerotic vascular diseases (ASVD) and periodontitis has been established.5 Joint 

of European Federation of Periodontology and American Academy of Periodontology 

(EFP/AAP) Workshop on Periodontitis and Systemic Diseases reported that there is 

consistent and strong epidemiologic evidence that periodontitis increased risk for future 

cardiovascular diseases.6 Chronic periodontitis and diabetes mellitus have bidirectional 

relationships; and it has also been reported that periodontitis and diabetes had significant 

direct and indirect effects mediated via each other on chronic kidney disease (CKD) 

incidence.7 Relationships between periodontitis and other systemic disease, i.e., chronic 

obstructive pulmonary disease (COPD), rheumatoid arthritis (RA), Alzheimer's disease 

and erectile dysfunction, also have been reported. 8 

Severe chronic periodontitis is characterized by loss in alveolar bone height 

and radiographs are required to assess this sign. Symptoms of non-severe chronic 

periodontitis are quite negligible until it is too late, then it results in loosening and loss 

of the tooth. Diagnosis of  less severe condition requires a dentist or dental hygienist to 
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manually measure the distance between the cementoenamel junction and the base of the 

periodontal pocket for all present teeth using periodontal probes. Such measure is gold-

standard, but time and resource-consuming in multiple numbers of cases, for instance 

public health missions. Such a scenario can be more efficiently addressed by the 

presence of a screening system, reducing the number of examinees which the dentist 

must manually conduct comprehensive periodontal probing. 

Risk scoring systems such as periodontal risk calculator (PRC)9, 10 and 

periodontal risk assessment (PRA)11 have been proposed by Page et al. and Lang et al., 

respectively. PRC scores the patient with a risk score between 1-5 (1 being low risk and 

5 being high) as well as a disease state score between 1-100. It uses 9 features to score, 

including the radiographic bone height. As seen in Figure 1.1., PRA categorizes the 

patient into three distinct classes, namely low risk individual, moderate risk individual 

and high-risk individual. While it uses 6 parameters to score, its parameters include 

clinical measurements such as presence of bleeding on probing and residual pockets. 

While the measures enable the process to be more objective, inclusion of clinical 

parameters restricts the applicability of the system without the presence of dental 

professionals.  

By excluding oral examinations, other parameters such as demographics 

and risk behaviors are used to assess the risk. Risk prediction models are typically 

developed by statistical modelling and commonly applied are cross-sectional regression 

models. While logistic regression models are simple and efficient, they rely on a proper 

selection of the features, which means feature engineering is vital for the model. A 

common approach is to use a limited number of known risk factors and domain expert 

selected features. Supervised nature of the approach misses the opportunity to discover 

novel patterns, and limited model’s performance leads to be suboptimal. 

Nowadays, machine learning emerges as an alternative for risk prediction. 

Machine learning algorithms can have features needed for prediction learned from the 

available dataset.12 Their abilities to handle high dimensions remove the necessity for a 

feature selection, as well as they can handle images or signal data as predictors in 

addition to the structured data. Machine learning models can learn with specified 

outcomes (supervised) or without specified outcomes (unsupervised) as well. While 

unsupervised models are applied to detect the patterns in the data, supervised machine 
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learning can be applied for both classification and regression tasks. A branch of machine 

learning called deep learning models are feature learning models, consisting of multiple 

layers of features, obtained by composing simple but nonlinear modules that each 

transforms the feature at one layer (beginning from input layer) into a feature at a higher, 

slightly more abstract layer, resulting in improved prediction from data.13, 14  

Over traditional statistical modeling, machine learning models can also 

improve the performance by applying the hyperparameter optimization. Different data 

patterns require different sets of parameters, to minimize the loss of the classification 

model. For example, support vector machines can perform on non-linear relationships 

by applying soft margins, by allowing misclassifications or using kernels to make the 

classes linearly separable. Hyperparameters of deep learning models, such as activation 

functions, can be tuned to work with either linear or non-linear relationship between 

independent and dependent variables. 

On the other hand, traditional statistical models have a descriptive model 

approach such as the relationship between the independent (age) and dependent 

(incidence of periodontitis) variables; hazard ratio of Cox regression and odd ratio of 

logistic regression. While this interpretability is preferable for clinical applications, 

machine learning models tend to have an algorithmic approach model, which performs 

better for prediction. High performance machine learning models such as deep learning 

and ensemble learning models are claimed to have “black box”, due to their lack of 

interpretability. Artificial neural networks have complex network with interconnected 

nodes or neurons, either passing information to another neuron or not due to being 

deactivated. Both algorithms, feed forward and backward propagations are going back 

and forth for all training samples to optimize the model for minimal loss. While these 

intricate connections and processes lead the model towards higher performance, the 

relationship between the input (age)  and the output (incidence of periodontitis) of the 

model can no longer be interpreted. For a pure diagnostical purposes, such a model 

might be less acceptable in a clinical environment. But by applying it in such a way that 

it can help screen the patients so that they can be informed to emphasize their effort on 

oral hygiene and dental visits, it can be more of a practical purpose. Our challenges here 

are to see if the performance of machine learning models can be superior to a statistical 
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model for our study purpose and if increased performance will be desirable enough for 

the exchange with the interpretability of the model. 

 

 

1.2 Research Question 

Do machine learning models have better predictive performance than 

statistical models in screening of chronic periodontitis? 

 

 

1.3 Research Objectives 

The objectives of the study are - 

1. Develop statistical and machine learning predictive models on 

longitudinal data for screening of severe chronic periodontitis. 

2. Compare the performance of the predictive models between statistical 

model and machine learning models on longitudinal data for screening 

of severe chronic periodontitis. 

 

 

1.4 Expected Benefits 

By deploying a screening model in periodontal examinations, it should 

reduce the number of people requiring comprehensive periodontal probing, which 

would further reduce the time, resource requirements and workloads for the examiners. 

Longitudinal modelling would allow the models to learn the data patterns better than 

the cross-sectional regression model. After both internal and external validations, the 

resulting models with proficient performances could be deployed for screening purposes 

at surveys as well as applied on large longitudinal datasets such as electronic health 

records to monitor and recommend healthy  oral and dental practices or visits at regular 

intervals.  
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Figure 1.1 Periodontal Risk Assessment by Lang and Tonetti (2003)15  
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2.  

CHAPTER II 

LITERATURE REVIEW 

 

 

2.1 Epidemiology of Periodontitis 

Periodontitis is the inflammation of periodontium, a disease involving the 

structure surrounding the tooth and it is considered one of the most common disease in 

humanity. From the 2009 and 2010 National Health and Nutrition Examination Survey 

(NHANES), over 47% of the U.S. adults who aged 30 years and older (64.7 million 

people), representing, had some form of periodontitis. And for adults 65 years and older, 

70.1% had periodontal disease.16  

While the bacterial plaque is considered to be the initiator of the condition, 

it always is present in the oral cavity as the dental plaque, in both healthy and 

compromised patients. It is formed from the acquired pellicle, which is a layer of saliva 

mainly consisting of glycoprotein, shortly after tooth brushing or oral hygiene methods. 

It helps with the adhesion of the bacteria to the tooth and the mass of bacteria proliferates 

in the dental plaque, forming bacterial or microbial plaque. With insufficient or 

improper oral hygiene practices, the plaque builds up to become the tartar or calculus, 

which further helps the adhesion of the bacterial plaque. 

Fortunately, with the effective immune system, periodontal diseases will not 

develop as long as the balance between the microbial and host response is maintained. 

This balance can be broken either by the hyper-responsiveness or the high virulence of 

the bacteria, or by the decrease in host immune by systemic factors. Then the 

periodontium becomes inflamed and subsequent destruction of alveolar bone happens. 

But during the initial stages of the inflammation, the symptoms are less noticeable, so 

the process is encouraged by the patient’s negligence of oral hygiene. The disease 

progresses and the patient may suffer from gingival bleeding with little provocation, 

gum swelling, dull pain, gingival abscess, and tooth mobility. This leads to tooth loss, 

decreasing the occlusal ability, digestive ability and, effectively, the patient’s quality of 

life.17  
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2.2 Risk Factors of Periodontitis 

Periodontitis is of complex etiological causes. While bacterial plaque is 

considered to be the initiator of the condition, by acting as the biofilm, there are other 

local factors such as mal-occlusion, dental restorations and oral prostheses, that 

encourage the formation of dental plaque. Also, other systematic factors, such as mal-

nutrition and poorly controlled diabetes mellitus increase one’s susceptibility to 

periodontal diseases. Oral habits such as smoking and betel quid chewing habits can 

increase one’s risk while oral hygiene habits such as frequency of tooth brushing18-23 

and flossing removes the dental plaque, so reducing the risk of microbial plaque 

maturing. Smoking is a well-established risk factor, and it is also reported that severity 

of radiographical bone loss is enhanced by betel/pan chewing. The number of teeth and 

sometimes decayed, missing, and filled teeth index (DMFT) are also included as oral 

risk factors for chronic periodontitis. As shown in Figure 2.1, other factors such as tooth 

mobility, number of teeth with bleeding, and number of teeth which are mostly applied 

oral risk factors. Demographic risk factors such as smoking, age and sex appear in 

Figure 2.2. 

Demographically, it is reported that the prevalence of periodontitis increases 

as one grows older.19-30 Also, periodontitis has a higher prevalence in men (~57%) 

compared to women (~39%).18-22, 24, 25 However, the paper also advices that different 

socioeconomic and behavioral factors between genders might have influenced, rather 

than the gender bias.31 Income18-20, 22 and education levels18, 19, 22, 24, 25, 27-29, 32 are 

common features in predictive models. Also, family size18, 21, body mass index18, 20, 33, 

drinking habit21, 24, 33, diabetes mellitus19, 26, 34 and hypertension18, 26, 35 are also 

suggested.  

Several literatures study association between a limited number of potential 

biomarkers and chronic periodontitis, as shown in Figure 2.3. As mentioned, 

periodontitis is initiated by the microbial dental plaque and the host susceptibility for it. 

The presence of sub-gingival pathogens induces local inflammatory response and large 

number of leukocytes are exuded and migrated as the first line of defense. It is observed 

that the number of white blood cells (WBC) increases in patients with chronic 

periodontitis and the increased number of neutrophils and lymphocytes are statistically 

significant.36 Immunoglobulin G, part of humoral immunity, is also observed to be 
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increased. Immunoglobulin G3 serum levels discriminate well between chronic 

periodontitis and healthy patients. While there is a local inflammation at the site of 

periodontitis, it is also studied that the patient with chronic periodontitis have low grade 

systemic inflammation. Interleukin-6 is produced at site of inflammation and considered 

to be dumped into systemic circulation, increasing interleukin-6 levels. Interleukin-6 

also induces hepatic synthesis of C-reactive protein. It is observed that there is an 

association of chronic periodontitis with high Interleukin-6  levels and high C-reactive 

protein, measured by high sensitivity C-reactive protein test. Inflammation also 

adversely affects the lipoprotein levels, being observed the lower high-density 

lipoproteins levels (HDL) and higher low-density lipoproteins levels (LDL) in patients 

with chronic periodontitis.  

 

 

2.3 Predictive modelling of periodontitis 

As seen in Figure 2.4 and Figure 2.5, it is observed that logistic regression 

is mostly applied for predictive modelling. However, application of different criteria for 

labelling samples results in different performance of the same model. Also, different 

performance metrics applied by each study reduce comparability, as shown in Table 2.1. 

Studies on prediction models try to compare between the performances of 

included different combinations of features (demographical features, risk behavior data, 

and oral features). For self-reportable models, questionnaires are used to collect the oral 

features instead of clinical examination. Eke et al. observes that including both 

demographic and oral features in the model performs better than only including 

demographic features. In addition to other features, Verhulst et al. also applies 

biomarker data of the saliva, resulting in higher and more balanced performance of the 

model among the reviewed models. However, while it performs better, identifying 

biomarkers from saliva such as protease and chitinase also consume resources. We need 

to balance our models between predictive power and required resource. 

Nevertheless, the common goal of the majority of the studies is to diagnose 

periodontitis without clinical examination. By applying only self-reportable features 

such as demographics and risk behaviors, the resulted model can be applied with a rapid 
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non-invasive screening tool. With our study, we aim to improve model performance 

with machine learning models and hyperparameter optimizations. 

 

2.3.1 Statistical Modelling 

2.3.1.1 Logistic Regression 

Data Transformation  

Logistic Regression requires both the inputs and outputs of the 

model to be numerical. Therefore, for categorical data, feature transformation is 

required. For target variables, it is necessary to label the target variables’ classes as [1] 

for positive class and [0] for negative class. 

 

Methodology 

Logistic regression is a statistical model, which applies the 

logistic function (sigmoid function) to determine the binary outcome of the sample in 

its basic form, although there are other complex adaptations of logistic regression for 

other purposes. In contrast to linear regression where dependent variable is linearly 

related to independent variable, the log-odds (logarithm of odds) of event is a linear 

combination of independent variables in logistic regression. It can be univariate (single 

predictor) or multivariate (multiple predictors). Depending on the number of outputs, it 

can be binomial (binary outcome), multinomial (more than two possible outcomes) or 

ordinal (dependent variables have ordinal nature). Logistic regression is usually the 

model of choice for the stepwise feature selection. 

2.3.1.2 Mixed effects Logistic Regression 

For training of a classification model, i.i.d assumption 

(independent, identically distributed) for the training dataset is made. Therefore, vanilla 

logistic regression cannot be applied for longitudinal datasets, where correlation 

between repeated measurements violates i.i.d. Mixed effect models are applied in such 

settings by considering as levels or hierarchy. 

Mixed effect models, also called multilevel models, are 

statistical models considering both fixed and random effects. In biostatistical sense, 

fixed effects are population-average and random effects are subject-specific effects (also 

called latent variables, which are assumed to be unknown). Mixed effects models extend 
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the capability of the regression model, by recognizing that individuals in population are 

heterogenous. In mixed effects models, each subject is allowed to have their own 

subject-specific intercept and/or slope. Mixed effects logistic regression, like vanilla 

models, can also be applied for classification tasks. Flow chart and block diagrams for 

developing mixed effects logistic regression model as a classifier is shown in Figure 

2.6. and 2.7. 

𝑦𝑖𝑗 = 𝑋𝑖𝑗𝑏 + 𝑍𝑖𝑗𝑢 

- where 

𝑦 = target variable (logit) 

𝑋 = fixed effects feature 

𝑏 = coefficient of feature X 

𝑍𝑢 = random effects variable describing latent variables 

𝑖 = cluster 

𝑗 = observation of 𝑖th cluster 

 

2.3.2 Machine Learning  

2.3.2.1 Support Vector Machine 

Data Transformation  

Support vector machine requires both the inputs and outputs of 

the model to be numerical. So, for categorical data, feature transformation is required. 

For target variables, it is necessary to label the target variables’ classes as [1] for positive 

class and [-1] for negative class. 

Methodology 

Support vector machine is a type of supervised machine learning 

algorithm. Support vector machine works exclusively on binary classifications. While 

the two classes are separated with a decision boundary, such boundary can be drawn in 

thousands of ways as a few shown in Figure 2.8. The function of support vector machine 

is to search the best separating line, called the hyperplane, which leaves the maximum 

margin width from both classes. Support vector machine accomplishes this by 

considering only the support vectors, which are on the margin of the hyperplane, instead 

of considering all the data points, as shown in Figure 2.9. Support vectors are the data 

points that are closest to the other class in hard margins. For the output of the model, 
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the hyperplane is considered zero and the support vectors are considered [1] and [-1]. 

Theoretically, a data point can be on the zero plane, which makes it neither in the 

positive nor the negative class. Practically, only negative values are considered negative 

[-1] class and other values such as zero and the positive values are considered positive 

[1] class. Support vector machine performs optimally in linearly separable data.  

However, real-life data are rarely linearly separable, due to 

outliers or noise data. As seen in Figure 2.10., soft margins are applied by considering 

other data points as support vectors allowing some data points to be on the other side of 

the hyperplane ( misclassified ) instead of using a hard margin which has low variance 

and high bias by overfitting to the training data. Alternatively, using kernel functions 

increases the dimension of the dataset. For example, in Figure 2.11., the two-

dimensional dataset becomes three dimensions, which allows better separability by the 

linear decision plane. 

And, since support vector machine separates using a linear 

plane, they are limited for binary classifications. However, several workarounds such 

as one-vs-all approach enables it to be applicable for multiclass classifications as well. 

 

2.3.2.2 Support Vector Regression 

Methodology 

Support vector regression is an adaptation of support vector 

machine applying the concept of linear regressions. In ordinary least squared regression, 

the best fitted regression line is created from the data by minimizing the summation of 

squared error as shown in Figure 2.12.  

𝑦′𝑖 = 𝑤𝑥𝑖 + 𝑏 

- where 

𝑦′𝑖 = regressed value for data point 𝑖 

𝑥𝑖 = feature of data point 𝑖 

𝑤 = weight or coefficient of feature 𝑥 

𝑏 = bias of the regression line 

𝑒𝑟𝑟𝑜𝑟𝑖 = 𝑦𝑖 − 𝑦′𝑖  

𝑚𝑖𝑛 ∑‖𝑒𝑟𝑟𝑜𝑟𝑖‖
2

𝑛

𝑖=1
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- where 

𝑦𝑖 = actual value of data point 𝑖 

𝑒𝑟𝑟𝑜𝑟𝑖 = error of the regressor for data point 𝑖 

In real life, the presence of noise data or outliers affects the 

regression line, and by extension, the error rate. In support vector regression37, support 

vectors are determined to set the margin as in conventional support vector machine. 

Error is calculated only from the data points inside the margin thus ignoring the outliers. 

The width of the margin must be controlled, since a margin too wide will consider all 

data points with the model becoming influenced by noise and overfitted. On the other 

hand, small margin would not be able to learn from the data with the regression line 

becoming underfitted. 

Therefore, for the support vector regression model, we would 

like to consider as much data points as we can while not becoming overfitted. As in 

Figure 2.13, the regression line (the hyperplane) and the margins are parallel, so the 

perpendicular distance between two parallel lines is widened as much as possible.  

𝑑 =  
|𝑦′ − 𝑦|

√𝑤2 + 1
 

- where 

𝑑 = perpendicular distance between the hyperplane and the margins 

𝑦 = actual value of the support vector on the margin 

𝑦′ = regressed value for the support vector 

 

Since the perpendicular distance (𝑑) is inversely proportional to 

weight (𝑤), 𝑤 is reduced instead of error as in linear regression. However, as 𝑑 

increases, more data points will be considered so risking overfitting. Therefore, the error 

for each data point is constrained under the amount of error we are willing to accept 

called epsilon (𝜖) and it is a hyperparameter.  

𝑚𝑖𝑛 ∑‖𝑤‖2 

‖𝑒𝑟𝑟𝑜𝑟𝑖‖ ≤ 𝜖 

Applying the concept of margins from conventional support 

vector machines, soft margins are applied in regression by considering some more data 
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points outside of the acceptable error (𝜖) as shown in Figure 2.16. By increasing the 

constraint, we let the model consider more data points called slacks. But since we do 

not want the model to consider too much data points, we penalize the model based on 

how much slacks we are giving ourselves. 

𝑚𝑖𝑛 ∑‖𝑤‖2 + 𝐶
1

𝑛
∑‖𝜉𝑖‖

𝑛

𝑖=1

 

‖𝑒𝑟𝑟𝑜𝑟𝑖‖ ≤ 𝜖 + ‖𝜉𝑖‖ 

- where 

𝜉 = the amount of slack allowed for the model 

And 𝐶 is also a hyperparameter how much we want to penalize 

for allowing slacks. Because we penalize only on the data points outside the epsilon 

zone, it is also known as epsilon insensitive loss. We cannot control how much slacks 

(may be too few or too many) but the amount of error we are willing to accept is set. 

This type of support vector regression is called Epsilon regression as shown in Figure 

2.14. In another type of support vector regression called nu-regression38, epsilon (𝜖) is 

not a hyperparameter but part of the penalty term. Here, 𝜈 (nu) is a hyperparameter 

which determines control the amount of slacks left outside the margin and the value lies 

between 0 and 1. Since increasing 𝜖 reduce 𝜉 and the penalty on 𝜖 is reduced by 𝜈 value, 

𝜖 is increased rather than 𝜉 resulting in less slacks. 

𝑚𝑖𝑛 ∑‖𝑤‖2 + 𝐶(𝜈𝜖 +
1

𝑛
∑‖𝜉𝑖‖

𝑛

𝑖=1

) 

 

2.3.2.3 Mixed Effects Machine Learning 

As stated before, linear mixed models consider random effects 

different between each cluster. 

𝑦 = 𝑋𝑏 + 𝑍𝑢 

𝑋𝑏 is the population average value and it accounts for within-cluster variation. 𝑍𝑢 is the 

subject-specific value and it accounts for between-cluster variation. On the other hand, 

non-linear mixed models estimate the relationship between features and the target 

variable as non-linear, and machine learning models can be applied for such 

relationship.  
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𝑦𝑖𝑗 = 𝑓(𝑋𝑖𝑗) + 𝑍𝑖𝑗𝑢 

- where 

𝑓(. ) = non-linear function  

 

Classical machine learning classification and regression 

algorithms do not generate high quality models on correlated data so mixed effects 

machine learning models39, 40 are developed as an extension of traditional machine 

learning methods. They are longitudinal/clustered supervised machine learning, as that 

of learning the two components of a non-linear mixed model separately through an 

iterative expectation maximization-like algorithm, in which the fixed-effect component 

is estimated using machine learning methods and the random-effect component is 

estimated using linear mixed model. By including random effects within the model, 

mixed effects machine learning is resistant to variabilities introduced by correlated data. 

Mixed effects machine learning can take advantage of dependencies between the 

observations to generate more robust and accurate models. It is to be noted that the 

applied machine learning model here should be a regression model. 

Expectation-Maximization Algorithm 

It is an iterative algorithm as shown in Figure 2.15. 

Step 1. Given a set of incomplete data, consider a set of starting parameters. 

Step 2. Expectation step (E — step): Using the observed available data of the dataset, 

estimate (guess) the values of the missing data. 

Step 3. Maximization step (M — step): Complete data generated after the expectation 

(E) step is used in order to update the parameters. 

Step 4. Repeat step 2 and step 3 until convergence. 

Regression 

Initial random effects are set as zero. Since we consider the 

target value to be the summation of fixed and random effects, fixed effects are calculated 

by subtracting random effects from the target and they are trained as the modified target 

value for the machine learning regressor. After training the machine learning model, the 

model is used to predict the value for each observation. The predicted values are 

subtracted from the target and the residuals are estimated to be the random effects used 

to train the linear mixed model. By the trained linear mixed model, new random effects 
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are re-estimated. The stopping criterion is set and until it is met, the fixed effects are 

calculated again by redacting random effects. Machine learning model is retrained, and 

the loop is continued as shown in Figure 2.16. 

Stopping criteria are set in terms of maximum iterations and 

absolute change in likelihood of the mixed model. Recommended setting for maximum 

iterations value is not stated in the literature. Convergence in term of likelihood is set 

similar to statistical models as well where the iterations are proceeded until the change 

of the estimated parameter vector is negligible with respect to the accuracy of the 

estimates.41 In STATA, tolerance for change is 1e-6 and maximum iteration is 300. In 

R(lme4), tolerance for change is 1e-6 and maximum iteration is 50. 

When the model is applied, both the trained machine learning 

regressor and the mixed model are used to predict the values and they are summed. For 

samples not in the training data, the random effects are unknown therefore zero is used, 

which means they are predicted in terms of fixed effects only as shown in Figure 2.17. 

Classification 

For classification, the target value must be transformed into 

numerical or logit value manually since we are applying two regressor models. All 

initial processes are similar with regression framework, until the convergence criteria 

are met. This is considered as the inner loop or micro iteration. After the inner loop, 

fixed effects are predicted by the machine learning regressor and random effects are 

estimated by the linear mixed model. Both effects are summed to create the logit value 

for each observation. The logit value is transformed into probability and the 

probabilities are dichotomized using a decision threshold. The resultant classes are 

considered as the new target class.   

The new targets are transformed into logit values again, and 

previously estimated random effects are removed from this to create new fixed effects. 

Machine learning regressor is trained again with updated fixed effects and the inner loop 

is restarted. This step is called the outer loop or macro iteration. The inner loop is 

repeated until the convergence criteria, and it leads to the outer loop again. The outer 

loop will have its own convergence criteria, and both will be repeated until both loops 

converge . 



Fac. of Grad. Studies, Mahidol Univ.  Methodology / 16 

 

Convergence criteria for inner loop are the same as the 

regression framework. For the outer loop, there is no recommendation for maximum 

number of iterations as well so it must be set based on the computation resource and 

time resource availability. As shown in Figures 2.18 and 2.19, maximum of the absolute 

change in logit value is also monitored and the loop is continued as long as the value is 

more than the tolerance. During the application, the output of the model is calculated 

the same as before, but it is the logit value, so it is transformed into probability and 

dichotomized. Figures 2.20 and 2.21 visualize the flowchart and block diagram for 

developing a mixed effects machine learning framework with Support vector machine 

as the fixed effects estimator. 

 

2.3.3 Deep Learning 

Deep learning is a branch of machine learning methodologies whether it is 

supervised, semi-supervised or unsupervised. They are artificial neural networks at the 

basic level - including input layer, hidden layer, and the output layer - with single or 

multiple neurons at each layer depending on the purpose and architecture accordingly. 

While a basic artificial neural network including three basic layers are considered as 

multiple layer perceptron, a deep neural network includes more than three -  i.e., more 

than one hidden layer. The larger the numbers of hidden layers in a neural network, the 

longer it takes the network to train and produce the output, but such architectures are 

considered to have better performances at solving more complex relationships between 

the independent and dependent variables. While statistical models and classical machine 

learning models’ functionalities are limited to structured or tabulated data, members of 

the deep learning models can be applied with non-structured data such as image analysis 

and signal processing. 

2.3.3.1 Artificial Neural Networks 

Data Transformation 

Artificial neural network requires both the inputs and outputs of 

the model to be numerical. So, for categorical data, feature transformation is necessary. 

For target variables, it is necessary to label the target variables’ classes as [1] for positive 

class and [0] for negative class. 
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However, labeling of the target variable is also different based 

on the function of the model and the activation functions applied. For binary 

classification with sigmoid function, the samples are labeled 0 or 1. But SoftMax 

function requires separate target variables for each class, so the samples are labeled as 

[0,1] or [1,0]. In multi-class classifications where classes are mutually exclusive, it is 

necessary for the target to be one-hot-encoded such as [1,0,0], [0,1,0] and [0,0,1]. 

However, multi-label classifications where one sample can have multiple labels, targets 

are labeled as [1,1,1], [0,1,1], [1,0,1], [1,1,0], [0,0,1], [0,1,0], [1,0,0] and [0,0,0].  

Methodology 

Neural networks are loosely modeled after human brain, 

consisting of interconnected simple processing units, which learns from experience by 

modifying the connections. Neural networks are called deep learning as well, because 

of the presence of multiple hidden layers. While a neural network consists of multiple 

layers, the architecture can be categorized into three groups, input layer, hidden layers, 

and output layer. 

The number of nodes (neurons) in the input layer are equal to 

all the features of the dataset or the features we selected for the prediction of the target 

variable. Neural networks require numerical values as input, so encoding for categorical 

variables is necessary. For ordinal variables, ordinal encoding is used, and one-hot-

encoding is used for nominal variables, as shown in Table 2.2. 

Hidden layer can be single or multiple, and these layers are 

where major computations of the neural network happens. As in Figure 2.22., a neuron 

in hidden layer uses the concept of perceptron, which is assigning weights to each input 

of the node. However, the weights of the  inputs are not known at the beginning of the 

model, so random weights to the inputs and bias to the layers are assigned. The 

combination of weights, inputs and bias creates the linear relationship between the 

inputs and output of the node, an activation function is used to introduce non-linearity. 

For example, as shown in Figure 2.23., sigmoid function compresses the output value [ 

-∞, ∞] (x-axis) to [ 0, 1] (y-axis), and the output value is passed to the next layer, which 

can be either another hidden layer or the output layer.  

The number of neurons in the output layer differs based on the 

function of the model and the activation functions applied. For regression, there is single 
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neuron, and no activation function is required. For classification, it can also be single 

neuron (single output) if the classification is binary, and the activation function is 

sigmoid. However, for multiclass or multilabel classifications and other activation 

functions such as SoftMax, multiple nodes (multiple output) in output layer are 

necessary. This process of passing from input layer to hidden layers to output layer is 

called “feed-forward” as seen in Figure 2.24. (Left).  

However, since our initial weights are assigned at random, 

chances are the output value of the model is different to real value as it is in Figure 2.24. 

(Right). So, another process called “backward propagation” is used to correct this, by 

comparing the predicted value with the real value. The loss of this prediction is 

calculated, and the weights of the nodes are updated based on the nodes’ responsibility 

for the loss. The weights are increased or decreased to have the prediction closer to the 

ground value. This process of feed-forward, back-propagation is repeated for all 

samples in the dataset. 

During the weight adjustment, some nodes get their weights 

changed into zero, which means the node will no longer contribute to the output. This 

is called “deactivated nodes”, and this allows the neural network to be applied without 

feature selection. Also, one of the biggest advantages of artificial neural networks is 

ability to model non-linear and complex relationship. However, neural networks are 

extremely complex and uninterpretable, so they are said to have a “Black box” as well. 

2.3.3.2 Recurrent Neural Networks 

Data Transformation 

Recurrent neural networks, similar to artificial neural networks, 

requires both the inputs and outputs of the model to be numerical. For target variables, 

it is necessary to label the target variables’ classes as [1] for positive class and [0] for 

negative class, similar to artificial neural networks. 

Also, unique for recurrent neural networks, the number of 

outputs can be as much as the number of time steps (observations) depending on the 

architecture. For multivariate models, the architecture can be many-to-one as well as 

many-to-many, as shown in Figure 2.25. 
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Methodology 

Recurrent neural networks are considered part of the 

representative learning algorithms, specializing in temporal sequence. Recurrent 

networks remember the past and its decisions are influenced by what it learnt from the 

past. Therefore, the outputs of the model are not only influenced by the weights applied 

to the input like traditional neural networks, but also the hidden state vector, 

representing the context of prior input and/or output. The major application of recurrent 

neural networks is natural language processing and voice recognition, where the 

previous context is necessary. 

As in Figure 2.26., the hidden state vector is initialized 

randomly and passed it into the activation function with the input. The activation is 

typically tanh function, which compress the output value [ -∞, ∞] (x-axis) to [ -1, 1] (y-

axis). The output of the function is passed to another activation function, sigmoid or 

SoftMax depending on the model, for the output of the observation. However, the same 

output of the tanh function also passes to the next tanh function together with the next 

observation of the input and it is repeated for all the observations. Therefore, the context 

of the previous observations is stored and passed along the time steps. Recurrent neural 

networks are unique in a way that the same weight is applied to all the inputs of the 

same parameter, but the different outcomes at different observations are resulted by the 

different hidden state vectors resulting from previous outcomes. Recurrent neural 

networks are trained with one sample at a time. Of the same sample, RNN cells train 

from one time-step to another. The output of the model is compared with the ground 

value, and the loss is calculated using loss function. The weights of the model are 

readjusted using backward propagation and gradient descent. 

Normally, the loss value is decreased by using gradient descent. 

Backward propagation finds the derivatives of the networks by moving layer by layer 

from final layer. However, since activation functions such as sigmoid and tanh compress 

the output value, the gradient decreases exponentially as we propagate backwards 

towards the initial layers. Small gradient means the weights will not be updated as 

effectively by each training sessions. But the initial layers are important to recognize 

the core elements of the input data, and this ultimately leads to inaccuracy of the model. 

Such problem is susceptible by deeper neural networks (more layers), and in recurrent 
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neural networks solve this by applying more complex architecture, such as long short-

term memory units. Flow chart and block diagram for developing recurrent neural 

network as the classification model is shown in Figures 2.27 and 2.28. 

 

 

2.4 Definition of Chronic Periodontitis 

 

2.4.1 Classifications 

Periodontitis is characterized by loss in alveolar bone height, so it is inferred 

the loss in attachment of junctional epithelium, which is the clinical attachment level. 

The severity of periodontitis is considered by the increasing measurement of clinical 

attachment level. Clinical attachment level is measured from the cementoenamel 

junction to the junction epithelium (base of the periodontal pocket). American Academy 

of Periodontology (1994) classifies chronic periodontitis as slight (1-2 mm), moderate 

(3-4 mm), or severe (≥ 5 mm).42 Although the AAP 1999 definition was widely accepted 

in clinical circumstances, it was not uniformly adopted by periodontal research. 

According to a systematic review of a common definition for periodontitis7, 

while most of the studies relies on clinical examination, selected periodontal parameters 

are quite different. It was found that several parameters, such as clinical attachment 

level, periodontal pocket depth and bleeding on probing, are used separately or jointly 

to define periodontitis. Also, other measures, such as the cut-off points for the 

measurements and, the distribution of periodontally compromised teeth, are lacking in 

uniformity. 

During the literature review, it is observed that Centre for Disease Control 

and Prevention - American Academy of Periodontology (CDC-AAP) classification for 

periodontitis is mostly applied, as seen in Figure 2.29. However, it is also observed that 

self-determined criteria to classify periodontitis are applied nearly as much, signifying 

the lack of uniformity in defining the condition. While World Health Organization’s 

Community Periodontal Index for Treatment Needs (CPI-TN) is applied as well, it 

should be noticed that the index tries to identify the level of treatment needed for the 

patient explicitly instead of diagnosing the condition. Consensus report of 5th European 

Workshop in Periodontology proposes a new criterion for identifying periodontitis by 
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staging. The staging procedure takes three criteria in consideration: greatest decrease in 

clinical attachment level, radiographic bone loss and tooth loss due to periodontitis. 

Due to lack of uniformity, the Centre for Disease Control and Prevention 

and American Academy of Periodontology proposed a new standard case definition for 

surveillance of periodontitis and the criteria are stated in Table 2.316, 43. Several 

literatures have used  Centre for Disease Control and Prevention - American Academy 

of Periodontology definitions.18, 19, 22, 24, 25, 44 

 

2.4.2 Centre for Disease Control and Prevention – American Academy 

of Periodontology Definitions 

Loss in alveolar bone height is the characteristic of chronic periodontitis and 

it is the measurement between cementoenamel junction to tip of the alveolar bone. 

Without radiographs, loss in attachment of junctional epithelium, called Clinical 

Attachment Level, is measured from the cementoenamel junction to the junctional 

epithelial attachment. Periodontal Pocket Depth is also an alternative measurement, 

which is the distance between coronal margin of the gingival sulcus to the base of the 

gingival sulcus or the periodontal pocket. 

Periodontal pocket depth and clinical attachment levels are measured using 

periodontal probes such as the University of North Carolina-15 (UNC-15) probe. For 

every tooth present in the dentition excluding the third molar, six sites of the gingival 

sulcus are measured :  

1. labial or buccal site,  

2. labio-mesial or bucco-mesial site,  

3. labio-distal or bucco-distal site,  

4. palatal or lingual site,  

5. palato-mesial or linguo-mesial site and  

6. palate-distal or palate-distal site. 

Applying these measurements, Centers for Disease Control and Prevention 

- American Academy of Periodontology criteria categorize periodontitis into four levels: 

none, mild, moderate, and severe periodontitis. 

- Severe periodontitis : two or more interproximal sites with clinical 

attachment levels more than or equal to 6 mm that are not on the same 
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tooth AND one or more interproximal sites with periodontal pocket 

depth more than or equal to 5 mm. 

- Moderate periodontitis : two or more interproximal sites with clinical 

attachment levels more than or equal to 4 mm, OR two or more 

interproximal sites with periodontal pocket depth more than or equal to 

5 mm, not on the same tooth. 

- Mild periodontitis : two or more interproximal sites with clinical 

attachment levels more than or equal to 3 mm, AND two or more 

interproximal sites with periodontal pocket depth more than or equal to 

4 mm, not on same tooth or one site with periodontal pocket depth more 

than or equal to 5 mm. 

- None / Healthy periodontium. 

 

 

2.5 Conceptual Framework   

 

According to the research question and objectives of our study, a 

conceptual framework for developing algorithms screening severe chronic 

periodontitis is constructed in Figure 2.30. 
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Table 2.1 Performance of current predictive models 
Paper Best 

performing 

model 

Performance Metrics 

Sens. Spec. Acc. Prec. AUC PPV NPV Corr. 

Coef. 

MSE 

Leite et al. 18 LR 67.57 67.50 -- -- 0.670 -- -- -- -- 

Cyrino et al. 19 LR 54.4 94.3 -- -- 0.833 -- -- -- -- 

Thakur et al. 34 ANN -- -- -- -- -- -- -- 0.8207

2 

0.0799

78 

Shankarapillai 

et al. 26 

ANN -- -- -- -- -- -- -- 0.9780

9 

0.1328

1 

Zhan et al. 25 LR 80.0 72.7 -- -- 0.830 74.6 78.5 -- -- 

Özden et al. 27 SVM -- -- -- 0.98 -- -- -- -- -- 

Özden et al. 27 ANN -- -- -- -- -- -- -- 0.4061 -- 

Özden et al. 27 DT -- -- -- 0.98 -- -- -- -- -- 

Lai et al. 20 LR 63.5 68.6 65.8 -- 0.712 61.6 70.3 -- -- 

Javali et al.   21 LR -- -- 61 -- 0.7509 -- -- -- -- 

Eke et al. 22 LR 93.5 29.2 -- -- 0.79 -- -- -- -- 

Wu et al. 24 LR -- -- -- -- 0.93 -- -- -- -- 

Verhulst et al. 29 LR 80 88 -- -- 0.91 93 69 -- -- 

Abbreviations – 

Acc. = Accuracy; AUC = Area under receiver operating characteristic (ROC) curve; ANN = Artificial neural 

networks; Corr. Coef. = Correlation coefficient; DT = Decision tree; LR = Logistic regression; MSE = Mean 

squared error; NPV = Negative predictive value; PPV = Positive predictive value; Prec. = Precision; Sens. = 

Sensitivity; Sens. + Spec. = Sensitivity + Specificity; Spec. = Specificity; SVM = Support vector machine 
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Table 2.2 Example of transformed data with 2 features and 2 Classes 
Age Education 

Level 

(Ordinal) 

Education Occupation Occupation_ 

doctor 

Occupation_ 

engineer 

Occupation_ 

programmer 

Label Class 

 Ordinal 

Categorical 

variable 

Ordinal 

Encoding 

Nominal 

Categorical 

variable 

One Hot Encoding Binary 

Categorical 

Variable 

Binary 

Encoding 

35 Primary 

School 

0 Programmer 0 0 1 Periodontitis 1 

25 Bachelor’s 

degree 

3 Doctor 1 0 0 Healthy 0 

21 Middle 

School 

1 Doctor 1 0 0 Healthy 0 

30 Middle 

School 

1 Programmer 0 0 1 Periodontitis 1 

29 High 

School 

2 Doctor 1 0 0 Periodontitis 1 

22 High 

School 

2 Engineer 0 1 0 Healthy 0 

22 High 

School 

2 Doctor 1 0 0 Healthy 0 

29 Bachelor’s 

degree 

3 Engineer 0 1 0 Healthy 0 

33 High 

School 

2 Engineer 0 1 0 Periodontitis 1 

29 High 

School 

2 Programmer 0 0 1 Periodontitis 1 
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Table 2.3 Centre for Disease Control and Prevention - American Academy of 

Periodontology (CDC-AAP) classification 
Case Definition 

No periodontitis No evidence of mild, moderate, or severe periodontitis 

Mild periodontitis ≥2 interproximal sites with clinical attachment level  ≥3 mm, and 

≥2 interproximal sites with periodontal pocket depth ≥4 mm (not 

on same tooth)  

or one site with periodontal pocket depth ≥5 mm 

Moderate periodontitis ≥2 interproximal sites with clinical attachment level  ≥4 mm (not 

on same tooth),  

or ≥2 interproximal sites with periodontal pocket depth ≥5 mm 

(not on same tooth) 

Severe periodontitis ≥2 interproximal sites with clinical attachment level  ≥6 mm (not 

on same tooth) and ≥1 interproximal site with periodontal pocket 

depth ≥5 mm 
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Figure 2.1 Oral Risk Factors applied in previous literatures and predictive models 
 

 
Figure 2.2 Demographic and Behavioral risk Factors applied in previous literatures and 

predictive models 
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Figure 2.3 Laboratorial features and biomarkers applied in previous literatures and 

predictive models 
 

 

Figure 2.4 Number of papers in literature review, applying a particular model (Some 

papers apply multiple models, and each type is only counted once) 
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Figure 2.5 Distribution of models in literature review ( Some papers apply multiple 

models, and all models are counted ) 

 
Figure 2.6 Flow chart for Mixed Effects Logistic Regression – Training Model 

Generation 

88%

1% 10%

1%

Distribution of models being applied

Logistic Regression Support Vector Machine Artificial Neural Networks Decision Tree
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Figure 2.7 Block Diagram for Mixed Effects Logistic Regression – Testing and Target 

Transformation 
 

 
Figure 2.8 A few possible decision boundary (hyperplanes) for the dataset 
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Figure 2.9 Optimal decision boundary (hyperplane) with maximum margin 
 

 

 

Figure 2.10 Soft margins allow misclassified data points. ( The hyperplane is not 

optimal ) 
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Figure 2.11 Kernel functions increase the dimension of the dataset, making it linearly 

separable. 

 
Figure 2.12 Ordinary Least Squared Regression 
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Figure 2.13 Support Vector Regression 
  

 
Figure 2.14 Soft Margin with Slacks 
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Figure 2.15 Expectation-Maximization Algorithm 
 

  
Figure 2.16 Training Mixed Effects Machine Learning Regression 
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Figure 2.17 Mixed Effects Machine Learning Regression Framework 

 
Figure 2.18 Training Mixed Effects Machine Learning Classification 
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Figure 2.19 Maximum of the absolute change in logit value 
 

 

 
Figure 2.20 Flow chart for Mixed Effects Support Vector Machine – Training Model 

Generation 
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Figure 2.21 Block Diagram for Mixed Effects Support Vector Machine – Testing and 

Target Transformation 

 

Figure 2.22 Perceptron of a neural network 
 

 
Figure 2.23 Sigmoid curve or logistic curve 
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Figure 2.24 Architecture of a neural network (Left) and Training error in feed forward 

network (Right) 
 

 
Figure 2.25 Architectures of a recurrent neural network 
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Figure 2.26 Illustration of a one-to-many recurrent neural network 
 

 
Figure 2.27 Flow chart for Recurrent Neural Networks – Training Model Generation 
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Figure 2.28 Block diagram for Recurrent Neural Networks – Testing and Target 

Transformation 
 

 

Figure 2.29 Distribution of labeling criteria in literature review (Some papers apply 

multiple criteria, and all criteria are counted)  
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Figure 2.30 Conceptual framework of chronic periodontitis screening models 



Fac. of Grad. Studies, Mahidol Univ.  M.Sc. (Data Science for Health Care) / 41 

3.  

CHAPTER III 

METHODOLOGY 

 

 

3.1 Study Design and Setting 

This study is a sub-cohort of prospective cohort study, namely Electric 

Generating Authority of Thailand (EGAT) cohort, by retrieving 5-years follow up 

period. Details about EGAT cohort are referenced45, but in short, EGAT project contains 

three parallel cohorts, also known as EGAT1, EGAT2 and EGAT3. Each cohort begin 

in 1985, 1998 and 2009 respectively. Each follow up is examined every 5 years, except 

for 12 years gap between 1st survey (1985) and 2nd survey (1997) of EGAT1. In the 3rd 

survey (2002) of EGAT1, periodontists collaborated with the cohort by including half-

mouth examination in the study. In 2003, 2nd survey of EGAT2, also known as EGAT 

2/2, started including full-mouth examination. EGAT 2/3 (2008) and 2/4 (2013) 

included more questionnaires about oral health and habits. 

This study was conducted applying EGAT2 cohort. The EGAT 2/3 and 2/4 

are used as the training and testing datasets. EGAT 2/3 and EGAT 2/4 are defined as 

the patient characteristics 5 years before and now respectively. All models predict the 

periodontal status of the samples into two classes (severe chronic periodontitis and none 

or non-severe chronic periodontitis). Rationale and setting details of the research 

objective are as follows. 

Rationale 

We aimed to screen the periodontal examinees by predicting the probability 

of having severe chronic periodontitis without the need for comprehensive periodontal 

probing. From literature reviews and expert opinions, the features that are correlated 

with periodontitis were selected, such as demographics, underlying diseases, risk 

behaviors, oral and laboratorial features. Selected features were applied for the models 

as predictors. Periodontal status was the target variable for all models. 

Setting 
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For longitudinal modelling, we applied both EGAT 2/3 and EGAT 2/4 

dataset. The models applied were mixed effects logistic regression, recurrent neural 

networks, and mixed effects support vector machines The model performances were 

measured by six performance metrics: sensitivity, specificity, area under receiver 

operating curve, positive likelihood ratio, positive predictive value, negative predictive 

value, F1 score, and Brier score. The models were compared against each other. 

 

3.1.1 Inclusion Criteria 

All available subjects in EGAT 2/3 were included unless they met the 

exclusion criteria. For EGAT 2/4, only subjects followed up from EGAT 2/3 were 

included unless they met the exclusion criteria. 

 

3.1.2 Exclusion Criteria 

Some subjects were not present in ALL periodontal examinations due to (1) 

refusal to participate, (2) systemic conditions which required antibiotic prophylaxis 

before dental procedure including congenital heart disease or valvular heart disease, 

previous history of bacterial endocarditis or rheumatic fever, total joint replacement, 

and end-stage renal disease, and (3) fully edentulous subjects. Such subjects were 

excluded for all models. 

 

 

3.2 Data Collection 

In each survey, general demographic data (age, gender, educational level, 

income, marital status), behavioral data (smoking status, alcohol consumption, 

exercise/physical activity), family history of illness, underlying diseases (diabetes 

mellitus, hypertension)  were collected by self-administered questionnaires. Physical 

examinations, i.e., blood pressure (BP), heart rate, blood glucose level, weight, height, 

and waist & hip circumference, were performed by clinicians and trained personnel 

from Ramathibodi Hospital. Laboratory tests under fasting state were carried out 

included glucose, low-density lipoprotein (LDL), high-density lipoprotein (HDL), 

immunoglobulin G3, interleukin 6, and a complete blood count (CBC). 
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3.3 Features 

 

3.3.1 Outcome of Interest 

The outcome of interest was the periodontal status of the subject at the 

period of examination. The subjects were labelled as “severe” or “non-severe” 

periodontitis and severe periodontitis, according to the periodontitis definition of the 

Center for Disease Control and Prevention – American Academy of Periodontology 

(CDC-AAP), which defined “severe periodontitis” as harboring two or more 

interproximal sites with clinical attachment level ≥ 6 mm that are not on the same tooth 

and one or more interproximal sites with periodontal pocket depth ≥ 5 mm. 

3.3.1.1 Periodontal Examinations 

Periodontal examinations including periodontal pocket depth 

and gingival recession were carried out on all fully erupted teeth, except third molars 

and retained roots. Periodontal pocket depth is the measurement from coronal margin 

of gingival margin to the tip of a periodontal probe, and gingival recession is the 

measurement from coronal margin of gingival margin to the cementoenamel junction. 

The parameters were measured applying a periodontal probe - University of North 

Carolina 15 (PCP-UNC15) on six sites, i.e., mesial, mesio-buccal, mesio-lingual, disto-

buccal, disto-lingual, and lingual site of the gingival sulcus per tooth. These 

measurements were made in millimeters and were rounded to the nearest whole 

millimeter.  

Calibration and standardization for periodontal measurements 

were implemented among six to eight examiners before the survey. The weighted kappa 

coefficients (±1 mm) were used to determine the agreement of inter-examiner and intra-

examiner (Table 3.1). Between each pair of examiners, the kappa ranged from 0.72 to 

1.00 for periodontal pocket depth and 0.67 to 1.00 for clinical attachment level/ gingival 

recession. The weighted kappa coefficients (±1 mm) within each examiner ranged from 

0.85 to 1.00 for the periodontal pocket depth and from 0.80 to 1.00 for the clinical 

attachment level. 

3.3.1.2 Periodontal classification 
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Due to the absence of homogenous classification for chronic 

periodontitis, we labeled the samples of our dataset based on the CDC-AAP 

classification. To classify a sample as chronic periodontitis, clinical attachment level is 

required, so it is calculated. The subtraction of gingival recession from pocket depth 

results in the measurement from the cementoenamel junction to the tip of the periodontal 

probe, hence clinical attachment level is resulted. Whereas the CDC-AAP criteria has 

four classes of periodontitis (non, mild, moderate, and severe), we categorized our 

samples into two, severe periodontitis and non-severe periodontitis (non, mild, and 

moderate) as shown in Table 3.2.  

 

3.3.2 Features associated with Periodontitis 

3.3.2.1 Self-administered data 

Demographics 

Demographic data such as age, gender, education, and income 

were reported by the individual themselves using case-report forms.  

Risk behaviors 

Subjects were categorized into (1) non-smoker (2) ex-smokers 

and (3) current-smokers, based on multiple questionnaires such as past/current smoking 

habits, quantity and duration of smoking, age at start or quit smoking. 

Alcohol drinking habits were also classified as similar, based on 

history of alcohol consumption, along with frequency, duration, and type of alcohol. 

Oral factors 

Oral and dental examinations were carried out by experienced 

periodontists from the Department of Periodontology, Faculty of Dentistry, 

Chulalongkorn University in mobile dental units. Number of teeth and oral hygiene 

index (plaque score) were measured as part of oral parameters. 

3.3.2.2 Physical Examinations 

Body measurements 

Height was measured in centimeters and weight was measured 

in kilograms, while being dressed in normal clothing with shoes taken off. Waist and 

hip circumferences were measured in centimeters with measuring tapes by trained 

personnel. Body mass index (BMI) was calculated from the recorded weight in 
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kilograms divided by squared height in meters. Waist-to-hip ratio was calculated from 

the recorded waist circumference in centimeters divided by hip circumference in 

centimeters.  

Underlying conditions 

Underlying conditions were identified from physical and 

laboratorial examinations, along with prescribed medications. Diabetes mellitus was 

diagnosed if an individual had fasting blood sugar (FBS) ≥ 126 mg/dl or had been taking 

anti-diabetic drugs. Hypertension was diagnosed if the participant had systolic blood 

pressure (SBP) ≥ 140 mmHg or diastolic blood pressure (DBP) ≥ 90 mmHg or had been 

taking prescribed anti-hypertensive drugs. Dyslipidemia was identified if the subject has 

high-density lipoprotein (HDL) < 40 mg/dl in male or HDL < 40 mg/dl in female OR 

low-density lipoprotein (LDL) ≥ 160 mg/dl OR triglyceride ≥150 mg/dl OR used any 

lipid-lowering medications.  

3.3.2.3. Laboratorial Examinations 

Blood samples were collected after 12-hour overnight fasting. 

Blood glucose was measured by plasma samples in mg/dl (Peridochrome, Boehringer 

Mannheim, Mannheim, Germany). High-density lipoproteins and low-density 

lipoproteins were measured in mg/dl using enzymatic-calorimetric assays (Boehringer 

Mannheim, Mannheim, Germany). immunoglobulin G3 in mg/dl, interleukin 6 in mg/dl 

and a complete blood count (CBC) was measured in count per micro liter. 

 

 

3.4 Sample size estimation 

There is no explicit guideline for sample size estimation for machine 

learning model. According to this literature review46, the researchers recommend 

number of sample size for developing a clinical prediction model should be : 

𝑛 =   
𝑍2𝑝(1 − 𝑝)

𝑑2
  

- where 

𝑛 = number of sample size 

𝑑 = absolute margin of error 

𝑝 = anticipated outcome proportion 
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We aimed for margin of error(d) ≤ 0.05 and applied the Z value of 1.96. 

The prevalence of severe periodontitis in Thai adult population is 26%. So, we 

anticipated the outcome proportion in our study population(p) to be 0.3. At least 322.69 

~ 323 subjects including 97 subjects with severe periodontitis was required for our 

models. 

Available sample size was explored. EGAT 2/3 (2008) has 2,271 subjects 

and 2,016 subjects are followed up in EGAT 2/4 (2013). We consider our study to have 

enough sample size to train and test our models 

 

 

3.5 Data Analysis 

In this section, we report the process of data pipeline – data management 

presenting how the data was collected as part of electricity generating authority of 

Thailand (EGAT) and transformed into the interested study factors. Data preparation 

reports how the data was manipulated to be applied as predictors for the classification 

model. 

 

3.5.1 Data Management 

3.5.1.1 Data Acquirement 

Demographic and medical records 

Demographic and medical data were retrieved from the EGAT 

databases. These were merged with the Excel worksheets of the civil registrations for 

the additional data. 

Periodontal databases 

Periodontal databases were constructed, all periodontal 

parameters for EGAT 2/3 and 2/4 were computerized as follows: 

Building the periodontal databases  

Databases were constructed using the Epidata version 3.1, 

separately by EGAT 2/3 and 2/4, because some variables were differently measured for 

each survey. Data entry systems were designed with “tooth by tooth” system. Users had 

to entry all parameters of one tooth including periodontal pocket depth, and gingival 

recession, before moving on to the next tooth. If a particular tooth is missing, the system 
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would not allow users to entry any data for that tooth. In addition, databases were 

encoded with specified value or range for each variable to prevent error during data 

entry. 

Data entry (Periodontal parameters)   

Data from case record forms (CRF) were manually checked by 

a data manager before entering the data. Legibility of handwriting, minor missing data 

and consistency of all parameters were revised. If handwriting is not clear, the query 

will be done directly to the recorder. Then data were independently entered twice by 

two persons. These two data sets were then validated, any inconsistence was checked 

and corrected. Finally, all records were manually checked and edited based on the 

original CRF, again. 

3.5.1.2 Data Cleaning 

Selected features and data were retrieved from the main 

databases. The variables were renamed systematically across both datasets in order to 

combine them all together. Then data cleaning was performed by the data cleaning team 

consisting of Prof. Ammarin Thakkinstian, Dr. Anuchate Pattanateepapon, Dr. 

Attawood Lertpimonchai, and Dr. Htun Teza. Regular meeting at least twice a month 

was organized to solve any incorrectness or unclear data. Data were summarized and 

cross-checked using pandas library and python 3.8. Any inconsistency or outliners were 

verified and checked with the CRFs to check data validity. All variables, except gender 

and height, were assigned as the time-varying variables for necessary models. 

Gender 

Gender is considered to be consistent across all datasets. 

Inconsistent data value between observations is validated by original case-report form. 

Date of examination 

The time length between the date of examination and the date of 

birth is calculated for the age of the subject at time of examination. The date has to be 

during the survey period and the values that are not or missing are recoded as the middle 

time of the survey period. 

Date of birth 

Similar with gender, date of birth is also assumed to be 

consistent across all dataset. However, when discrepancies are observed, civil 
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registration databases are also used as the source. Between the three datasets, the 

majority value for date of birth is selected. 

Education 

The level of education cannot be decreased. Illogical 

declinations are detected and decided by the team. 

Risk behaviors 

Smoking and alcohol drinking habits were classified within 

each period with multiple questions in questionnaire, then the datasets were merged. 

The values were checked to be logical, such as “current smoker” cannot become a 

“never smoker” in the next observation. If inconsistency is present, the decision will be 

made by the team. 

Body Measurements 

Height, weight, waist and hip were summarized and checked for 

outliers (i.e., exceeds mean ± 4SD). If outliers presented, the original CRF is checked. 

The change of the value overtime would also be checked after merging the datasets. 

Substantial change of weight, waist and hip would be list, and then, its possibility would 

be validated by comparing with other relevant variables. 

Blood pressure 

To determine the data validity of blood pressure, guidelines 

such as : presence of data for both systolic and diastolic blood pressure, within proper 

range of the value, and SBP value being higher than DBP were used. 

Laboratory results 

All laboratory results, which were reported in the continuous 

data, were checked for outliers (i.e., exceeds mean ± 4SD). If outliers exist, the 

likelihood of the value will be discussed and decided by the team. Illogical values were 

recoded to be missing values. 

3.5.1.3 Carried forward/backward methods 

To replace missing data for some variables, the 

forward/backward carry over methods were used. For example, carried backward 

method means that never smokers in EGAT 2/4 were imputed in EGAT 2/3 as “never 

smoker” as well. 
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3.5.2 Data Preparation 

3.5.2.1 Feature Transformation 

Logistic regression, recurrent neural networks and mixed effects 

support vector machine require the input of the models to be numerical values. In Table 

3.3, categorical variables were encoded based on the type of categorical variable. Binary 

variables were encoded as 0 and 1. Ordinal variables such as education level were 

encoded using ordinal encoding, and for nominal categories, label encoding was used 

for recurrent neural networks and one-hot-encoding for mixed effects support vector 

machine.  

3.5.2.2 Target Labelling 

CDC-AAP criteria uses both the measurement of clinical 

attachment level and periodontal pocket depth to classify as periodontitis as stated in 

Table 3.2. Subjects that are eligible for “Severe” criterion of the classification were 

labelled as “Severe”, and the rest are labelled as “Non-severe”. During the encoding, 

“Non-severe” subjects were encoded as 0 and “Severe” subjects were encoded as 1. 

 

 

3.6  Model Architecture 

The model architectures for the statistical model (mixed effects logistic 

regression) and machine learning models (recurrent neural networks and mixed effects 

support vector machine) are constructed as follows.  

Mixed effects logistic regression  

Developing environment is Stata/SE 16.0 and more details in section 

3.6.3.1. Cutoff point is 0.35 and more details in section 3.6.3.2. Feature selection is done 

by stepwise forward selection and more details in section 3.6.1. The model performance 

is evaluated by sensitivity, specificity, accuracy, area under receiver operator 

characteristics curve, positive likelihood ratio, positive prevalence value and negative 

prevalence value, F1 score and Brier score, more details in section 3.6.4. 

Recurrent Neural Network 

Developing environment is Python and more details in section 3.6.3.1. 

Cutoff point is 0.35 and more details in section 3.6.3.2. No feature selection is done and 

more details in section 3.6.1. Hyperparameter tuning is done with random search 
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followed by grid search and more details in section 3.6.3.3. The model performance is 

evaluated by sensitivity, specificity, accuracy, area under receiver operator 

characteristics curve, positive likelihood ratio, positive prevalence value and negative 

prevalence value, F1 score and Brier score, more details in section 3.6.4. 

Mixed effects support vector machine 

Developing environment is R and more details in section 3.6.3.1. Cutoff 

point is 0.35 and more details in section 3.6.3.2. No feature selection is done and more 

details in section 3.6.1. Hyperparameter tuning is done with random search followed by 

grid search and more details in section 3.6.3.3. The model performance is evaluated by 

sensitivity, specificity, accuracy, area under receiver operator characteristics curve, 

positive likelihood ratio, positive prevalence value and negative prevalence value, F1 

score and Brier score, more details in section 3.6.4. 

 

3.6.1 Feature Selection 

From all the features measured in EGAT2 cohorts and datasets, 21 features 

associated with chronic periodontitis were nominated as observed from literature 

reviews and as recommended by experts’ opinion in periodontology.  

1. Demographics – age, gender, education level, income, body mass index, 

and waist to hip ratio. 

2. Underlying diseases – diabetes mellitus, hypertension, dyslipidemia, and 

chronic kidney disease. 

3. Risk behaviors – smoking and alcohol drinking habits. 

4. Oral features – number of present/remaining teeth and plaque score. 

5. Laboratorial features – lymphocytes, uric acid, triglycerides, cholesterols, 

high density lipoproteins, low density lipoproteins, and lipid lowering drugs taking 

status. 

Feature selection, also known as variable selection, is a procedure of 

nominating a subset of relevant independent variables to apply as predictors in model 

construction. While several deep learning procedures are representative learning, where 

the irrelevant features are weighted less or none at all, the process reduces the dimension 

of the training dataset, subsequently computational resource and the training time 

requirements. It also reduces the risk of the model overfitting on the training dataset, 
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allowing the models to have relatively low bias and high variance. Feature selection 

methods can be grouped into three categories: 

1. Filter methods 

2. Wrapper methods and 

3. Embedded methods. 

Filter methods select the variables regardless of the model, by testing for 

difference in variance or correlation/association between independent (age) and 

dependent (chronic periodontitis) variables. The selected variables are used as the 

predictors for the classification or regression model. These methods are considered to 

be robust against overfitting and have less computational time. However, since they 

consider one-to-one relationships, such methods tend to select redundant variables 

(weight and body mass index) by not accounting for interaction between variables. Chi-

square tests and analysis of variance (ANOVA) tests are considered as filter methods. 

Unlike filter methods, wrapper methods evaluate subsets of variables, 

allowing to detect the possible interactions. It has the greedy approach, evaluating all 

possible combination of variables. Applying to a specific model, candidate variables are 

added one by one, or applied as a whole and removed one by one. On a chosen model 

fit criterion such as Akaike information criterion (AIC), the variables are chosen if their 

presence as predictor improves the fit of the model. However, the computational cost is 

high on datasets with many features. Also, this procedure requires a model to be tested 

on the fit for the dataset, therefore it is considered to have high chance of overfitting. 

Wrapper methods include stepwise regression methods such as forward selection and 

backward elimination. 

Embedded methods are proposed to combine the advantages of two prior 

methods. These methods are included as part of a model training procedure. They 

calculate the importance of a feature in making prediction. Tree-based methods report 

the contributions of each feature while regularization methods such as LASSO and 

Ridge decreases the coefficients of the less relevant variables to reduce its contribution 

towards final prediction. Like filter methods, these methods are considered to be robust 

against overfitting, while they also consider the interaction between the features like 

wrapper methods. 

3.6.1.1 Statistical Model 
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Appropriate feature selection is required for statistical 

modelling which is Mixed effects logistic regression. Part of filter methods of feature 

selection, stepwise selection can be applied in different ways, such as forward selection 

or backward elimination. In forward selection, the initial model is built with one 

variable, adding one by one. Using a model fit criterion, the variable is selected if its 

inclusion gives the most statistically significant improvement of the fit. After selection 

of second variable, all the remaining variables are tested again as the candidate for the 

third variable. This procedure is repeated until including more variables do not improve 

the model. 

In backward elimination, the initial model is built with all 

available variables, removing one after another. Here, the variable is eliminated if the 

absence of it gives the most statistically insignificant deterioration of the fit. This 

procedure repeated until removing more variables results in statistically significant 

deterioration. Combination of both prior methods, called bidirectional elimination, tests 

for both including and excluding the variable at each step. 

Other than testing for fit of the model, p-value is the common 

statistical entry and exit criteria of the variables. Multivariate regression models are 

applied as the model and the threshold is set for including or excluding the variable. 

Unlike conventional statistically significant value of 0.05, 0.1 is the typical value used 

and the variables with less p-value are included in the model for current step. Similarly, 

variables with p-value more than 0.1 are excluded. 

For our study, univariate mixed effects models for each were 

developed from the nominated variables, and they were ranked in increasing order based 

on their statistical significance which is p-value of Wald chi-squared test less than 0.1. 

It resulted in 15 significant variables out of initial 21. Afterwards, multivariate models 

were built by including one variable by one beginning from the most significance (least 

p-value). If the significant variable is no longer significant in multivariate regression, it 

will not be included in the subsequent regression with next significant variable. It 

resulted in six final variables being included with the final multivariate mixed effects 

logistic regression model. They were gender, education level, smoking habit, diabetes 

mellitus, number of present/remaining teeth, and plaque score. 

3.6.1.2 Machine Learning Models 
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Machine learning models generally can handle higher data 

dimensions than their statistical counterparts, so feature reduction can be skipped for 

these models. However, we had made several attempts to observe if machine learning 

models would gain any advantage by removing several features from the initial 21 

nominees. 

Stepwise feature selection 

By applying filter method of feature selection, 15 features 

nominated by univariate mixed effects logistic regression and 6 features included in 

final model were considered as additional subsets of features to train the machine 

learning models 

Recurrent feature elimination 

Recurrent feature elimination is a wrapper-type feature selection 

algorithm. A machine learning model is designated and applied at the core of the 

selection method. It is considered being wrapped and used to select the predictors. When 

compared with the filter method of feature selection where the features are scored and 

selected based on them, recurrent feature elimination is a wrapper method that uses 

backward elimination filter-based method internally.  

For our study, support vector machine with linear kernel47 was 

applied as the wrapped machine learning core. While trying to figure out the decision 

threshold for the dataset, weights or 𝑤 for each feature was calculated. Such weights 

were ranked and the one with the smallest value is removed. This process is iterated 

until there is only one feature left in the model. The performance of the support vector 

machine model was compared for all versions with varying number of predictors and 

the one with the highest prediction performance was considered as the optimum feature 

subset for the machine learning model. 

Random forest feature importance 

Random forest models are part of ensemble machine learning 

models, applying bagging algorithm with multiple decision trees. Decision trees are 

supervised machine learning algorithms, built using recursive partitioning, more 

commonly known as “Divide and Conquer” approach. The decision tree splits the 

dataset into smaller subsets, and those subsets are split again into even smaller subsets, 

until each leaf are homogenous ( single class ) or stopping criteria is specified. Random 
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forest uses bootstrapping to create small subsets of the dataset to build the individual 

trees. Firstly, to validate the trees, out-of-box samples are allotted for each tree. From 

the remaining dataset, the features are picked without replacement and the samples are 

picked with replacement.  

Decision trees in random forest are built in the same process as 

singular decision tree, except they are trained with smaller dataset and varying 

combination of features, so they are uncorrelated to each other. In each split of every 

decision tree, all the features included in the model are evaluated on their ability to split 

the mother node in pure daughter nodes. This ability is measured in impurity indexes 

such as Gini impurity index for classification or Variance reduction for regression tasks. 

Considering the decision trees in the random forest are built with varying feature sets, 

the impurity indexes can be averaged for each feature across the forest. This is 

embedded method of feature selection and the features with the least average impurity 

index values are considered to have better power of splitting the samples into separate 

classes. The nominated features were ranked and separate machine learning models 

were trained with increasing number of features – from the most important feature to 

least. It resulted in 21 models - first model with only one but most important feature, 

second model including the two most important features to the last model with all 21 

features included. 

Findings 

For all machine learning models, the hyperparameters were set 

constant so that we could compare the performance based on the difference of 

predictors only. We observed that including a smaller number of features as predictors 

results in comparably similar or inferior performance. Due to the inherent nature of 

machine learning models to handle higher dimensions, recurrent neural networks’ 

application of dropout layers and our plans to apply further hyperparameter 

optimizations for the machine learning models, we decided to skip the feature 

elimination step, i.e., include all features, for all machine learning models.  

 

3.6.2 Data Splitting 

The total samples are split in 80% for model training and 20% for model 

performance testing as per Pareto principle. Since we are working with panel data, extra 
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caution is taken to avoid situations where different observations of the same individual 

appear in both datasets. 

 

3.6.3 Model Development 

Seed of 1996 was set in all developing environments for reproducibility. 

For Python, multiple seeds were required to be set for different libraries with built-in 

random value generators such as NumPy and TensorFlow in addition to the overall 

environment seed, but the same value of 1996 was still given for all. All models were 

developed using 64bit 2.3 GHz Dual-Core Intel Core i5 processor.  

3.6.3.1 Developing Environments 

Mixed effects logistic regression 

The model was developed in STATA/SE (Special Edition) 

version 16.0 for 64-bit Intel processors. Built-in library of “melogit” — Multilevel 

mixed-effects logistic regression was used to fit models for binary and binomial 

responses which is appropriate for our objective. Mixed effects model with random 

intercept was applied with random effects for each subject. 

Recurrent Neural Network 

The model was developed in Python 3.8.2 using Spyder 

integrated development environment 4.2.5 version. During the model development 

process, several libraries were applied along the data pipeline. For dataframe 

management and manipulation, NumPy version 1.19.2 and pandas version 1.2.3 are 

applied. Scalers and sample weights were created using scikit-learn version 0.23.2 and 

recurrent neural networks were developed using Keras version 2.4.3 and TensorFlow 

version 2.31. For data visualizations, Matplotlib version 3.3.1 was used. 

Mixed effects – Support Vector Machine 

The model was developed in R version 4.02 using R Studio 

1.3.1056 version. Support vector machine was applied as machine learning regressor in 

mixed effects machine learning model. Several packages were applied for the data 

management and model development process. readstata version 0.9.2 was used for 

importing STATA datasets. For the mixed effects – support vector machine, e1071 

version 1.7-4 was used to model SVM and lme4 version 1.1.-26 to estimate the random 
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effects. pROC version 1.16.2 and epiR version 2.0.19 were used to evaluate the model 

performance. 

3.6.3.2 Screening cut-off points 

All models applied were logit-based models, thus they outputted 

the log-odds of the event. The value was further transformed into probability with the 

values ranging from 0 (zero probability of having severe chronic periodontitis) to 

1(100% probability of having severe chronic periodontitis). Since the goal of our study 

is binary classification, the probability was dichotomized using a decision threshold. 

The default value is 0.5, but for our study, we applied the value of 0.35 to reflect the 

prevalence of the event (severe chronic periodontitis) in our dataset which is 34.6%. 

Although, it should be noted that this decision threshold influences the number of false 

positives or false negatives, affecting the ability of the classifier to overestimate or 

underestimate the condition. For instance, by applying a lower decision threshold, 

subjects with a lower probability are determined as positive, which would increase the 

false positives but reduce the number of people incorrectly identified as negatives who 

will miss the chance of an early diagnosis. 

3.6.3.3 Hyperparameter optimization 

For hyperparameter tuning process, the multiple sets were 

trained and evaluated with bootstrapped samples using random search function, which 

was followed by grid search function of scikit learn library. 

 

Recurrent neural networks 

The main hyperparameters tuned are - 

1. Number of hidden layers 

2. Number of nodes or neurons in each 

hidden layer and 

3. the learning rate of the optimizer. 

To compare the performance of the models with different 

combinations of aforementioned hyperparameters, basic specifications for other 

parameters were set constant to find the best performing model on the data. For all 

feature sets, 20% of training data was used for validation. Simple RNN layer cells and 

Tanh activation functions were used for all nodes in the hidden layers. Dropout rate of 
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0.2 was put between every hidden and output layers so 20% of all connections 

between nodes were randomly deactivated, thus it was not a fully connected model. 

One node in the output layer; sigmoid activation function was used for binary 

classification. Binary Cross Entropy was used for loss function and accuracy is the 

monitor metric. Batch size of 64 was applied for Mini-batch Gradient Descent 

optimization. 1000 epochs with early stopping were used for time and computation 

resource constraints. The outputs of the model were dichotomized using 0.35 

according to the prevalence of severe chronic periodontitis in the dataset.  

Number of hidden layers, number of nodes in each hidden 

layer and learning rate of the optimizers were tuned for the optimal performance 

metrics. Models were trained with various combinations of only one hidden layer to 

six hidden layers, nodes in each layer ranging from 21 to 80 and the learning rate from 

1 to 0.001. 

Mixed effects support vector machine 

For mixed effects machine learning, support vector machine 

was applied as the machine learning regressor to estimate the fixed effects portion of 

the framework. Overall hyperparameters of the framework were set constant to be 10 

maximum macro iterations with 0.01 tolerance and 50 maximum micro iterations with 

0.001 tolerance. Initial random effect of zero was set. Instead, the hyperparameters of 

support vector regressor were tuned.  

Since we applied nu regression architecture, the main 

parameters optimized are – 

1. Kernels 

2. C value 

3. gamma value when applicable and 

4. nu value.  

Models were trained with various combinations of nu-value 

0.1 to 0.6; linear, gaussian, polynomial kernels with C value 0.1 to 0.0001. Gamma 

value of 0.1 to 0.9 were also applied when radial and polynomial kernels were applied. 

 

3.6.4 Performance Evaluation 

3.6.4.1 Performance metrics and measurements 
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The framework of the model is shown in Figure 3.1. The 

performances of all models were evaluated using accuracy, sensitivity, specificity, 

positive likelihood ratio, positive predictive value, negative predictive value, C-

statistics (area under receiver operating characteristic curve), and receiver operating 

characteristic curve. 95% confidence interval is calculated for these metrics. In addition, 

F1 score or balanced F score, a measure of model accuracy better suited for unbalanced 

datasets such as ours, and Brier score were calculated as well. 

3.6.4.2 Evaluating statistical and machine learning models 

The classification models were evaluated based on prognosis 

accuracy (i.e., sensitivity, specificity and accuracy) calculated upon the constructed 

confusion matrices and we considered the models with the metrics above 70% to be of 

acceptable performance. 95% confidence intervals of the metrics were calculated in the 

R environment using epiR library. The library calculates the range using – 

𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = �̅� ± 𝑍
𝑒

√𝑛
 

- where 

�̅� = the mean value 

𝑒 = the standard deviation 

𝑍 = z-value for selected confidence interval (1.96 for 95% and 2.576 for 99%) 

𝑛 = the number of observations. 

Discrimination and calibration abilitiies of the classifiers were 

evaluated using area under receiver operating curve (AUC) and Brier score. For both 

metrics, the values range between 0 and 1; while higher is better for AUC, the opposite 

is true for Brier’s score. In addition, accuracy and Brier score metrics were monitored 

for the performance of the same model on different datasets – training and testing – and 

evaluated the overfit problem common to machine learning models. 

 

3.7 Limitations 

From literature reviews, it was observed that including oral features in the 

models predict better than not including them. The Electricity Generation Authority of 

Thailand (EGAT) dataset does not include much oral features, such as tooth mobility, 

bleeding on stimulation and more. While we tried to compensate the issue by deploying 
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more complex and higher performing models, the good models should perform better 

with such features. 

 

Table 3.1 Calibration of periodontal examination (weight kappa ± 1mm) 
 Periodontal pocket depth Clinical attachment level/ 

Gingival Recession 

 Inter-examiner Intra-examiner Inter-examiner Intra-examiner 

EGAT 2/3 0.77 – 0.89 0.87 – 0.91 0.67 - 0.94 0.90 - 0.96 

EGAT 2/4 0.74 - 1.00 0.87 - 1.00 0.78 - 1.00 0.87 - 1.00 

 

Table 3.2 Labeling Criteria for the dataset 
Label Case Definition 

Non-severe 

periodontitis 

No periodontitis No evidence of mild, moderate, or severe 

periodontitis 

Mild periodontitis ≥2 interproximal sites with clinical attachment 

level ≥3 mm, and ≥2 interproximal sites with 

periodontal pocket depth ≥4 mm (not on same 

tooth)  

or one site with periodontal pocket depth ≥5 

mm 

Moderate 

periodontitis 

≥2 interproximal sites with clinical attachment 

level ≥4 mm (not on same tooth),  

or ≥2 interproximal sites with periodontal 

pocket depth ≥5 mm (not on same tooth) 

Severe periodontitis Severe periodontitis ≥2 interproximal sites with clinical attachment 

level ≥6 mm (not on same tooth) and ≥1 

interproximal site with periodontal pocket 

depth ≥5 mm 

 

Table 3.3 Feature transformation 
Feature Original Form Encoding Model Required 

Form 

Type Possible value Encoded value 

Demographics 

Age continuous ≥43 Similar to original form 

Gender categorical Male, Female Binary Encoding 0, 1 

Education categorical Less than secondary 

school, vocational or 

diploma, higher 

bachelor’s degree, 

missing value 

Ordinal Encoding 0, 1, 2 

Income categorical < 20,000, 20,000 – 

49,999, >50,000 

Ordinal Encoding 0, 1, 2 

Body Mass Index continuous ~ Similar to original form 

Waist-to-hip ratio continuous ~ Similar to original form 

Underlying diseases 

Diabetes Mellitus categorical negative, positive Binary Encoding 0, 1 

Hypertension categorical negative, positive Binary Encoding 0, 1 

Hyperlipidemia categorical negative, positive Binary Encoding 0, 1 

Risk behaviors 
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Smoking habit categorical non-smoker, ex-

smoking, current 

smoker 

Ordinal Encoding 0, 1, 2 

Alcohol drinking habit categorical Never drinker, ex-

drinker, current 

drinker 

Ordinal Encoding 0, 1, 2 

Oral features 

Number of teeth continuous ≥1 & ≤28 Similar to original form 

Plaque score continuous 0~100 Similar to original form 

Laboratorial factors 

Lymphocytes continuous ~ Similar to original form 

Uric acid continuous ~ Similar to original form 

Triglycerides continuous ~ Similar to original form 

Cholesterols continuous ~ Similar to original form 

High density 

lipoproteins 

continuous ~ Similar to original form 

Low density 

lipoproteins 

continuous ~ Similar to original form 

Lipid lowering drugs 

taking status 

categorical negative, positive Binary Encoding 0,1 

 
Figure 3.1 Model Architecture 
 

ModelInput
Probability of having 

periodontitis 
Binary 

classification
Log odds of having 

periodontitis 
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4.  

CHAPTER IV 

RESULTS 

 

 

4.1 Description of EGAT Study 

As shown in Figure 4.1, 2271 subjects were included in the EGAT 2/3 

survey, and 2016 subjects were examined in EGAT 2/4 survey. Splitting using Pareto’s 

principle, 80% was applied as training data and it included 1817 subjects. For testing 

dataset, there were 454 subjects included. 69.99% male and 30.01% female were 

included in the training while 73.01% male and 26.99 female observations were 

included in the testing dataset. For both training and testing datasets, around 33% held 

a high school diploma and around 38% of the observations held bachelor’s degree. 

29.01% of training and 30.96% of the testing populations were ex-smokers, and non-

smoking samples were 53.61% and 53.19%, respectively.  13.13% of training and 

13.76% of testing observations had diabetes mellitus underlying. Average number of 

teeth was 23.29 and 23.45 for training and testing data with the average plaque score of 

71.02 and 70.42, respectively. Training dataset had 1,094 observations (34.64%) with 

severe chronic periodontitis present while testing data had 267 observations (34.41%), 

thus both datasets were considered as similar distributions. 

 

 

4.2 Models 

 

4.2.1 Mixed effects logistic regression 

4.2.1.1 Data Manipulation  

Dataframe was managed in the long format where repeated 

measures of the same individual were recorded in separate row. Within 1817 distinct 

training subjects, 1817 subjects were observed in 2008 and 195 subjects in 2013. 

4.2.1.2 Feature selection result 
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Appropriate feature selection is required for statistical 

modelling, and stepwise forward selection was done. 

For the multivariate regression, final model included six 

variables – gender, education level, diabetes mellitus, smoking habits, number of 

present/remaining teeth and plaque score. Fixed effects coefficients of the included 

variables are stated in Table 4.1. The output of the model was dichotomized using the 

prevalence of severe periodontitis in our dataset which is 35%. 

4.2.1.3 Performance  

Application of the final model as the risk prediction model had 

great performances. Without considering the known random effects of the training 

samples, the model identifies 91.3% of positive cases and 90% of negative cases 

correctly with 90.5% overall accuracy. It had 82.9 and 95.2 positive and negative 

predictive value respectively. The positive likelihood ratio is 9.18 and the area under 

receiver operating curve was 0.98. It is good discrimination ability, allowing the model 

to have high sensitivity and specificity simultaneously. Figure 4.2. presents the receiver 

operating characteristic curves of the model on training and testing data. 

When the same model was applied on the testing dataset, the 

model performed similarly with discriminative power of 0.98. Discriminative power 

was evaluated using area under receiver operating characteristic curve and values over 

0.9 is considered outstanding. It was 91.5% accurate with 89.5 sensitivity and 92.5 

specificity. Positive likelihood ratio of 11.9, positive predictive value of 86.2 and 

negative predictive value of 94.4 were observed. F1 score of the model on the testing 

data was 0.8782. The performance of the model is shown in Table 4.2. 

 

4.2.2 Recurrent Neural Network 

4.2.2.1 Data Manipulation 

Data frame was managed in the cube format which is similar to 

the long format except the repeated measurements of each individual are stacked in the 

third dimension. Since all training individuals are required to have equal timesteps for 

recurrent neural networks, subjects with only one measurement were dropped and only 

1345 distinct subjects were left. 
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For neural networks, numerical inputs were required so discrete 

or continuous variables were included as they are after applying MinMaxScaler to 

bound the values between 0 and 1. Label encoding was applied for categorical variables 

with more than binary class. 

4.2.2.2 Feature Selection Result 

All 21 features were applied as the input of the model and 

dropout layers were applied between each hidden layer instead of manual feature 

selections. 

4.2.2.3 Hyperparameter Optimization 

Out of 2690 training data, only 858 records had chronic severe 

periodontitis, so class imbalance problem was anticipated. Therefore, class weights of 

0.734 and 1.568 for negative and positive classes were calculated using scikit-learn 

package. However, Keras considers the concept of class to be ambiguous in 3 and more 

dimensional data so the sample weights were applied using class weight values as a 

workaround. 

For the hyperparameter tuning, basic specifications were set to 

find the best performing model on the data. For all feature sets, 20% of training data 

was used for validation. Simple RNN layer cells and Tanh activation functions were 

used for all nodes in the hidden layers. Dropout rate of 0.2 was allocated between every 

hidden and output layers so 20% of all connections between nodes were randomly 

deactivated, so it was not a fully connected model. One node in the output layer; sigmoid 

activation function was used for binary classification. Binary Cross Entropy was used 

for loss function and accuracy was the monitor metric. Batch size of 64 was applied for 

Mini-batch Gradient Descent optimization. 1000 epochs with early stopping were used 

for time and computation resource constraints. The outputs of the model were 

dichotomized using 0.35 according to the prevalence of severe chronic periodontitis in 

the dataset. Number of hidden layers, number of nodes in each hidden layer and learning 

rate of the optimizers were tuned for the optimal performance metrics.  The parameters 

were tuned for two different purposes and more details are presented in the following 

subsection. 

4.2.2.4 Performance 
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Recurrent neural network with three hidden layers and 70 

Simple RNN nodes in each layer was applied and learning rate of 1 was used to optimize 

model loss. The resulting model was 92.3% accurate overall with 87.4% sensitivity and 

94.7% specificity. Along with 88.4% positive predictive value and 94.1% negative 

predictive value, the model had 16.3 positive likelihood ratio. AUC measures the 

probability that a model can correctly discriminate between randomly selected 

individuals with or without the event and 0.95 means the model was very proficient. 

However, as shown in Table 4.3., when the same model was 

applied on the testing data, the performance diminished overall with 65.2 accuracy, 42.7 

sensitivity and 75.7 specificity. The discrimination became 0.65 which is very poor. 

Comparing the positive likelihood ratio of 1.7, positive predictive value of 45.3 and 

negative predictive value of 73.8 to respective performances on training dataset, the 

model can be considered overfit. Brier score is the measure of average difference 

between the observed and predicted probability by the model and the scores were 0.0625 

on training but 0.2770 on testing. Figure 4.3 presents the receiver operating 

characteristic curves of the overfit model on training and testing data. 

Instead, a new set of hyperparameters was searched with the 

condition that we allow ±5% discrepancy in accuracy performance between two 

datasets. The final model had four hidden layers with 62, 72, 72 and 62 RNN nodes in 

feed forward order and learning rate of 0.01 for optimizer. As seen in Table 4.4., it is 

evident that the performance of the model is inferior compared to the preceding models. 

Area under receiver operating curve of 0.75 was considered only moderate but the 

model was no longer overfit to the training data. Receiver operating characteristic 

curves of the final model on training and testing data are compared in Figure 4.4. 

 

4.2.3 Mixed effects – Support Vector Machine 

4.2.3.1 Data Manipulation 

Data frame was managed in the long format same as mixed 

effects logistic regression models. For support vector machines, numerical inputs were 

required so one hot encoding is applied for categorical variables. No additional data 

scaling was done other than default parameter in the e1071 library. 

4.2.3.2 Feature Selection Result 
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No additional feature reduction was done after initial 21 features 

selected by literature reviews and expert opinion. On the contrary, one hot encoding the 

categorical variables with more than binary class resulted in additional input features 

totaling 26 variables. 

4.2.3.3 Hyperparameter Optimization 

Hyperparameters of the overall model were set to be 10 

maximum macro iterations with 0.01 tolerance and 50 maximum micro iterations with 

0.001 tolerance. Initial random effect of zero was set. Instead, the hyperparameters of 

support vector regressor were tuned. Kernels, C value and gamma value when 

applicable were also tuned. Nu regression was applied while optimizing multiple nu 

values. The parameters were tuned for two different purposes and more details are 

presented in the following subsection. 

4.2.3.4 Performance 

Support vector regressor with nu value of 0.4 was applied. 

Radial kernel with 0.2 gamma value and C value of 0.1 was set. Resulting model 

performed very good with overall accuracy of 98.4%. The metrics were 99.7% 

sensitivity (true positive rate) and 97.7% specificity (true negative rate). The model were 

43.3 times more likely to correctly identified the true positive subjects as positive than 

incorrectly consider the negative patients as such. Discriminative power of 0.99 can be 

considered very proficient. 

However, when validated by the testing dataset as in Table 4.5, 

the model performance was reduced greatly to AUC value of 0.62 when is considered 

poor. Figure 4.5. presents the receiver operating characteristic curves of the overfit 

model on training and testing data. The overall accuracy was 62% with only 38.1% of 

positive predictions and 80.1% negative predictions were correctly predicted. Brier 

scores for training and testing data were 0.0403 and 0.2668 respectively so the model is 

considered overfit to the training dataset so new hyperparameter sets were searched. 

Nu-regression with nu value of 0.5 and radial kernel was 

applied. C-value of 0.1 and gamma value of 0.3 was set and the resulting model was 

considered as the optimized model with balanced performances. Area under receiver 

operating curve of 0.76 is only moderate but when compared to performances on the 

testing data, it was observed that the model was no longer overfit to the training data. 
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Receiver operating characteristic curves of the final model on training and testing data 

are compared in Figure 4.6. The performances of the final mixed effects – support vector 

machine is shown in Table 4.6.  

Table 4.7.presents comparison of all final classification models 

(Mixed effects logistic regression, Recurrent neural networks, and Mixed effects 

support vector machine). F1 score was measured for all models because we consider the 

positive class to be importance in our unbalanced data set. The score is the harmonic 

mean between precision (the ratio of correctly predicted positive to all predicted positive 

samples) and recall (the ratio of correctly predicted positive to all positive samples); in 

other words, the metrics measures how many positive instances it classifies correctly 

(precise) and how much the classifier does not miss positive instances (robust). Brier 

score is a measure of average difference in predicted probability. The metric ranges 

from 0 to 1, with lower value being preferred. It also is a measure of accuracy albeit it 

is not sensitive to decision threshold. Like accuracy metric, this value can be compared 

between performance of the model upon different datasets observing the model’s ability 

to generalize on unseen or non-training data. F1 score and Brier score are reported in 

Table 4.8. 
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Table 4.1 Fixed Effects Coefficients and Odds Ratio Estimates for Significant Variables 

Retained in the Final Multivariate Mixed Effects Logistic Regression Model 
Variables  Covariates Coefficient (SE) Odd ratios (95% 

CI) 

P-value 

Gender Male 0.97 (0.23) 2.63 (1.68 to 4.10) < 0.001 

 Female ref ref  

Education < High school 2.04 (0.38) 7.68 (3.62 to 16.30) < 0.001 

 Vocational 

School 

1.35 (0.35) 3.86 (1.93 to 7.72) < 0.001 

 Bachelor’s degree 0.29 (0.35) 1.34 (0.68 to 2.64) < 0.001 

 > Bachelor’s 

degree 

ref ref 0.393 

Smoking Non-smoker ref ref  

 Ex-smoker 0.73 (0.21) 2.09 (1.38 to 3.17) 0.001 

 Current smoker 1.68 (0.25) 5.38 (3.28 to 8.83) < 0.001 

Diabetes 

Mellitus 

Positive 0.50 (0.22) 1.66 (1.07 to 2.57) 0.024 

 Negative ref ref  

Number of teeth - -0.06 (0.02) 0.94 (0.91 to 0.97) < 0.001 

Plaque score - 0.03 (0.004) 1.03 (1.02 to 1.03) < 0.001 

Abbreviation: CI: Confidence Interval; SE: Standard Error; ref: Reference covariate group. 

 

Table 4.2 Performance of Mixed effects logistic regression (decision threshold – 0.35)  
On Training data (95% CI) On Testing data (95% CI) 

%Sensitivity 91.3 (89.5 – 93.0) 89.5 (85.1 – 92.9) 

%Specificity 90.0 (88.7 – 91.3) 92.5 (89.9 – 94.6) 

%Accuracy 90.5 (89.4 – 91.5) 91.5 (89.3 – 93.3) 

AUC 0.98 (0.98 – 0.98) 0.98 (0.98 – 0.99) 

Positive Likelihood Ratio 9.18 (8.05 – 10.46) 11.93 (8.77 – 16.25)  

%Positive Predictive Value 82.9 (80.7 – 85.0) 86.2 (81.6 – 90.1) 

%Negative Predictive Value 95.2 (94.1 – 96.1) 94.4 (92.0 – 96.2) 
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Table 4.3 Performance of overfit recurrent neural network (decision threshold – 0.35)  
On Training data (95% CI) On Testing data (95% CI) 

%Sensitivity 87.4 (85.0 – 89.6) 42.7 (36.0 – 49.7) 

%Specificity 94.7 (93.5 – 95.6) 75.7 (71.5 – 79.6) 

%Accuracy 92.3 (91.3 – 93.3) 65.2 (61.4 – 68.8) 

AUC 0.95 (0.94 – 0.96) 0.65 (0.61– 0.70) 

Positive Likelihood Ratio 16.3 (13.5 – 19.8) 1.7 (1.4 – 2.2) 

%Positive Predictive Value 88.4 (86.1 – 90.5) 45.3 (38.3 – 52.4) 

%Negative Predictive Value 94.1 (93.0 – 95.2) 73.8 (69.5 – 77.7) 

 

Table 4.4 Performance of final recurrent neural network (decision threshold – 0.35)  
On Training data (95% CI) On Testing data (95% CI) 

%Sensitivity 63.1 (59.7 – 66.3) 58.2 (51.3 – 64.9) 

%Specificity 73.3 (71.2 – 75.3) 73.5 (69.2 – 77.5) 

%Accuracy 70.0 (68.3 – 71.8) 68.6 (64.9 – 72.1) 

AUC 0.75 (0.73 – 0.77) 0.73 (0.68 – 0.77) 

Positive Likelihood Ratio 2.36 (2.16 – 2.59) 2.20 (1.82 – 2.66) 

%Positive Predictive Value 52.5 (49.4 – 55.6) 50.8 (44.4 – 57.3) 

%Negative Predictive Value 80.9 (78.9 – 82.8) 78.9 (74.7 – 82.7) 

 

Table 4.5 Performance of overfit Mixed Effects – Support Vector Machine (decision 

threshold – 0.35)  
On Training data (95% CI) On Testing data (95% CI) 

%Sensitivity 99.7 (99.1 – 99.9) 69.6 (62.8 – 75.8) 

%Specificity 97.7 (96.9 – 98.3) 52.0 (47.4 – 56.5) 

%Accuracy 98. 4 (97.8 – 98.9) 57.2 (53.4 – 61.0) 

AUC 0.99 (0.99 – 1.0) 0.62 (0.58 – 0.66) 

Positive Likelihood Ratio 43.3 (32.2 – 58.2) 1.45 (1.27 – 1.65) 

%Positive Predictive Value 95.6 (94.1 – 96.8) 38.1 (33.1 – 43.2) 

%Negative Predictive Value 99.8 (99.5 – 100) 80.1 (75.3 – 84.4) 
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Table 4.6 Performance of final Mixed Effects – Support Vector Machine (decision 

threshold – 0.35)  
On Training data (95% CI) On Testing data (95% CI) 

%Sensitivity 52.8 (49.5 – 56.0) 46.1 (39.1 – 53.2) 

%Specificity 82.7 (80.9 – 84.4) 78.2 (74.2 – 81.8) 

%Accuracy 72.7 (71.0 – 74.4) 68.6 (65.0 – 72.1) 

AUC 0.76 (0.75 – 0.77) 0.70 (0.68 – 0.73) 

Positive Likelihood Ratio 3.05 (2.72 – 3.43) 2.11 (1.69 – 2.64) 

%Positive Predictive Value 60.5 (57.0 – 63.8) 47.2 (40.1 – 54.4) 

%Negative Predictive Value 77.8 (75.9 – 79.6) 77.4 (73.4 – 81.0) 

 

Table 4.7 Performance of all final models (Performance with 95% Confidence Interval) 

(decision threshold – 0.35) 
Metrics\Models Mixed effects Logistic 

Regression 

Recurrent Neural Networks Mixed effects Support Vector 

Machine 

 Train Test Train Test Train Test 

%Sensitivity 91.3 

(89.5 – 93.0) 

89.5 

(85.1 – 92.9) 

63.1 

(59.7 – 66.3) 

58.2 

(51.3 – 64.9) 

52.8 

(49.5 – 56.0) 

46.1 

(39.1 – 53.2) 

%Specificity 90.0 

(88.7 – 91.3) 

92.5 

(89.9 – 94.6) 

73.3 

(71.2 – 75.3) 

73.5 

(69.2 – 77.5) 

82.7 

(80.9 – 84.4) 

78.2 

(74.2 – 81.8) 

%Accuracy 90.5 

(89.4 – 91.5) 

91.5 

(89.3 – 93.3) 

70.0 

(68.3 – 71.8) 

68.6 

(64.9 – 72.1) 

72.7 

(71.0 – 74.4) 

68.6 

(65.0 – 72.1) 

AUC 0.98 

(0.98 – 0.98) 

0.98 

(0.98 – 0.99) 

0.75 

(0.73 – 0.77) 

0.73 

(0.68 – 0.77) 

0.76 

(0.75 – 0.77) 

0.70 

(0.68 – 0.73) 

Positive 

Likelihood Ratio 

9.18 

(8.05 – 10.46) 

11.93 

(8.77 – 16.25) 

2.36 

(2.16 – 2.59) 

2.20 

(1.82 – 2.66) 

3.05 

(2.72 – 3.43) 

2.11 

(1.69 – 2.64) 

%Positive 

Predictive Value 

82.9 

(80.7 – 85.0) 

86.2 

(81.6 – 90.1) 

52.5 

(49.4 – 55.6) 

50.8 

(44.4 – 57.3) 

60.5 

(57.0 – 63.8) 

47.2 

(40.1 – 54.4) 

%Negative 

Predictive Value 

95.2 

(94.1 – 96.1) 

94.4 

(92.0 – 96.2) 

80.9 

(78.9 – 82.8) 

78.9 

(74.7 – 82.7) 

77.8 

(75.9 – 79.6) 

77.4 

(73.4 – 81.0) 

 

Table 4.8 F1 score and Brier score of the models 
Metrics\Models Mixed effects 

Logistic 

Regression 

Recurrent Neural Networks Mixed effects Support Vector 

Machine 

Overfit model Final model Overfit model Final model 

Metrics\Data Train Test Train Test Train Test Train Test Train Test 

F1 score 0.8694 0.8782 0.8792 0.4396 0.5731 0.5427 0.9759 0.4922 0.5636 0.4665 

Brier score 0.0610 0.0578 0.0625 0.2770 0.1809 0.1866 0.0403 0.2668 0.1978 0.2000 
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Figure 4.1 Model Development Diagram 
 

a)      b) 

  
Figure 4.2 Receiver operating curve of mixed effects logistic regression a) – on training 

data and right, b) on the testing data 
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Figure 4.3 Receiver operating curve of overfit recurrent neural network 
 

 
Figure 4.4 Receiver operating curve of final recurrent neural network 
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Figure 4.5 Receiver operating curve of overfit Mixed Effects – Support Vector 

Machine 
 

 
Figure 4.6 Receiver operating curve of final Mixed Effects – Support Vector Machine 
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5.  

CHAPTER V 

DISCUSSIONS 

 

 

Previous studies had applied cross-sectional regression models to predict 

the probability of having chronic periodontitis. With our study, data from longitudinal 

studies including samples with repeated measurements were used as training data for 

both the statistical model and machine learning models. It was observed that mixed 

effects logistic regression model had highest performance when compared to the 

machine learning models as well as cross-sectional logistic regression models.  

From the literature review, Verhulst et al.44 was considered to have the best 

performance with 80% and 88% for sensitivity and specificity respectively, and area 

under receiver operating curve value of 0.91. While the model applied salivary 

biomarker data such as Chitinase and Protease activity in addition to demographics and 

oral features, our mixed effects logistic regression model had comparably better 

performance with 89.5% and 92.5% for sensitivity and specificity, and discriminative 

power of 0.98. Considering our model considered only six features such as gender, 

education level, smoking habit, diabetes mellitus, dental plaque score and number of 

present teeth in dentition, this resulting superior performance owes to the longitudinal 

data.  

Mixed effects logistic regression models are considered to be superior to 

simple logistic regression models because they consider random effects or subject 

specific effects by considering multiple observations of the same subject in addition to 

fixed effects estimated by conventional models. Machine learning models failed to live 

up to the expectations, observing less stellar performances because they were unable to 

take advantage of their complex algorithms and advantages. For example, while the 

machine learning models can handle data with higher dimensions and correlated 

features, there were only 21 predictor features even when all relevant features 

nominated by the expert committee was included. Machine learning models can handle 

unstructured data such as images and signals but our data at hand were panel data 
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including sociodemographic features. All models learned solely from tabulated 

structured data therefore although the machine learning models included more features 

compared to the statistical mixed logistic regression model, they had inferior or poor 

performances even after hyperparameter optimization procedure. We considered several 

possible factors affecting the performance of the models. 

 

 

5.1 Minority positive class 

In many real-life problems, imbalanced datasets happen due to multiple 

reasons such as selection of survey population done correctly or not. The class 

imbalance problem can be better understood as three separate problems, which are – 

1. assuming that a performance metric is appropriate when it is not, 

2. assuming that the test distribution matches the training distribution when 

it is not, 

3. assuming that there is enough minority class when it is not. 

Provost F. (2000)48 states that two fundamental assumptions are made in traditional 

classifiers. The first is that the goal of the classifiers is maximum accuracy (minimum 

error rate); the second is that the class distribution of the training and test datasets is the 

same. Under these two assumptions, predicting everything as the majority class for an 

imbalanced dataset is often the right thing to do.  

Within 776 observations of our 454 testing subjects, 509 observations were 

negative. Considering if a classification model predicts all observations to be negative, 

267 observations will be incorrectly identified as negative (false negative), and 509 

observations will be correctly identified as negative thus true negative. While there will 

be zero observations for both correctly identified positives (true positive) and 

incorrectly identified positives (false positive), we will have 65.6% accuracy rate 

regardless of the usability of such model.  

Sensitivity is the ratio of true positive to all positive observations where 

specificity is the same but for negative cases. Positive predictive value is the ratio of 

true positive to all observations predicted as positive and the same goes for negative 

predictive value with negative cases. In the stated scenario, the sensitivity of this model 

will be zero in contrast to 100% specificity, meaning the model is unusable. Similarly, 
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negative predictive value will be 65.6% and positive predictive value is zero as well 

since the model cannot detect positive (non-disease) subjects.   

Therefore, in machine learning algorithms, hyperparameter tuning is done 

during the training process to optimize the performance of the model. Depending on the 

chosen set of hyperparameters, the model can become overfit to the training dataset like 

several reported models in chapter 4. The model pays a lot of attention to random noises 

in the training data, so they fail to generalize on the data it has not seen before, and they 

are considered as high variance. As a result, they perform very well on the training 

dataset but high error rate on the testing dataset. On the contrary, the model can become 

biased by paying very little attention to the training data, resulting in oversimplified 

models. They lead to high error rate on both training and testing data. Further, 

hyperparameter optimization process is done to balance between bias-variance tradeoff 

by comparing the model performance on both training and testing data.  

Even with appropriate optimization, the training data distribution should 

reflect the true distribution or prevalence of the condition, so that the model can learn 

to generalize and perform similarly on new subjects as well. That also applies with the 

data splitting where the testing data distribution should reflect the training data. 

According to the 8th Thailand national health survey (2017), 26% of Thai adults and 

36% of Thai elderly people had severe chronic periodontitis. Our surveys included 

subjects who are the current employees of Electricity Generating Authority of Thailand 

with the mean age of 54.4 (43.7 – 75.3) and our training dataset reflected to 1,094 

(34.6%) from 3,158 observations having severe chronic periodontitis which can be 

considered consistent. The testing data included 267 positive observations (34.4%) out 

of 776, which also matched appropriately. 

Ling (2010)49 states that the imbalanced class problem becomes meaningful 

only if one or both two assumptions above are false; that is, if the cost of different types 

of error (false positive and false negative in the binary classification) is not the same, or 

if the class distribution in the test data is different from that of the training data. The 

first problem was effectively dealt with cost-sensitive models. In recurrent neural 

networks, the amount of error in each subject is evaluated with a loss function such as 

binary cross entropy as shown in Figure 5.1, and the overall error of the model is 

considered the cost of the model. During the training process, for each set of weights 
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and biases for the hidden layers, the cost value is calculated, and these sets are adjusted 

to decrease the cost value as much as possible. Thus, by adjusting the loss value for 

misclassification, we can guide the model into more balanced performance instead of 

preferring the majority class. In Figure 5.2, class weights were applied to make it more 

expensive to misclassify a minority class into majority class than a majority into 

minority, which would further encourage prediction of everything as the majority class. 

Since we had similar class distribution for all our datasets, we could disregard the second 

problem as well. Then the literature suggests inadequate number of samples in the 

minority class for the classifier to learn adequately, which means we had a problem of 

insufficient or small training class which is different from imbalanced class problem. It 

could only be addressed by collecting more minority class subjects. 

 

 

5.2 Limitations of the current study 

To adjust for the second assumption made above, class weights were 

planned to be applied for recurrent neural networks. Keras library is a python library 

with TensorFlow backend, a major utility for training neural networks and deep learning 

and our source of choice for the recurrent neural networks. This library considers the 

concept of class to be ambiguous in data with 3 or more dimensions, which is the input 

data dimension for recurrent neural networks. Thus, sample weights based on class 

weights were applied instead as shown in Figure 5.3. For mixed effects support vector 

machine, e1071 library being applied for support vector machine in the model does not 

have an option to adjust for class weights. However, observing that mixed effects 

logistic regression does not require adjusting class weights and recurrent neural 

networks having similar problems even with class weights applied, we considered the 

poor performances were the problem of insufficient positive class rather than 

imbalanced class problem. 

In mixed effects logistic regression, observations of different subjects are 

used by logistic regression to estimate the fixed effects or population average effects of 

the selected predictor variables (gender, education, number of teeth) on the target 

variable and multiple records of the same subject are used to adjust for subjects specific 

or random effects. While the mixed models accept only one observation as well as 
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repeated measurements, recurrent neural networks require all the training subjects to 

have exactly same number of timesteps. For other applications of recurrent neural 

networks such as natural language processing, padding and masking techniques are 

applied to adjust, but it is not done in our study. Therefore, we had to remove subjects 

with only one observation from the training and testing data, resulting in decreased 

number of subjects in comparison with other models. We considered this to be one of 

the major factors affecting the performance of our neural network. 

Main advantage of recurrent neural networks is the ability to consider 

previous timesteps in terms of hidden vectors together with current features. However, 

since we had only two timesteps, the first timestep was basically a multilayer perceptron 

(simple artificial neural networks) mapping from features to the target variable at the 

first timestep. The second timestep would include the context from the first timestep, 

yet it was observed that the performance of the recurrent neural networks was inferior 

compared to mixed effects logistic regression model. Typically, the problem with 

similar models is that the model forgetting over long sequences but here we believe 

small number of timesteps as well as small training class resulted in poor performance 

of the model. 

For our machine learning models, we did not do further dimensional 

reduction over expert opinions and decision with the advisor team. Mixed effects 

logistic regression, the statistical model required feature reduction, since including too 

much could result in overfitting. However, we need to balance the appropriate number 

of features since not including all features correlated with the target will result in inferior 

performance of the model. While we do not have a set limit on numbers of included 

parameters within the model, several rules of thumb such as one predictor parameter for 

ten events (one in ten rule), one in twenty rule and one in fifty rules have been 

suggested.50 Here we applied stepwise forward selection with statistical significance of 

0.1 for univariate and 0.05 for multivariate regression. Of course, this approach is not 

without its drawbacks, since stepwise method is considered unstable51 in a sense that 

addition or removal of a covariate can result in varying p-value of the parameter, 

including scenarios where they become insignificant in multivariate regressions. 

However, we may consider our mixed effects logistic regression to have appropriate 

performance without overfitting or inferior predictive ability. 
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For sigmoid-based classification models, the output of the models are 

probabilities of having the positive class. Therefore, we must select a threshold on which 

we would dichotomize the value. The default value would be 0.5, but currently the 

decision threshold was 0.35 to reflect the prevalence of the condition in our data 

(34.6%). However, we may adjust the threshold to overestimate or underestimate since 

the cost of having more false predictions is different based on the problem. By lowering 

the decision threshold, the model will overestimate by considering subjects with lower 

probability to be positive, which means that it will result in less false negatives and more 

false positives. We are willing to accept more false positive subjects since we do not 

want to miss the opportunity of early diagnosis by getting a false negative in the 

screening step. The follow up examination is what we are trying to circumvent, however 

the screening system will reduce the overall workload necessary regardless as shown in 

Figure 5.4. We need to balance between demerits of following up and demerits of not 

following up. 

 

 

5.3 Application on mock data 

To exercise in applying our classifiers for the screening purposes, the 

models were applied with selected samples. Four mock samples who were present at 

both surveys were selected and a subset of their features which were applied by mixed 

effects logistic regression model are shown in Table 5.1. Four subjects had different 

disease progression over different observations,  

1. continuing healthy periodontium,  

2. persisting severe chronic periodontitis,  

3. developing over time and  

4. recovering over time. 

The selected mock population had 25% female and 3 subjects were 75% non-smokers. 

All subjects had at least a bachelor’s degree, and none had diabetes mellitus. Average 

number of present teeth in the first survey was 23.5 and in the second, it was 22.25 teeth 

with two subjects losing dentition over time. The female subject had decreased oral 

hygiene over time from 22.7% to 31.8% of tooth surfaces with dental plaque adhesion 

in second survey but still had a better oral hygiene compared to the  male subjects with 
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average of 63.12 plaque score. Models with selected final sets of hyperparameters were 

performed on the mock samples to evaluate their performance.  

The characteristics of the subjects underwent necessary feature selection or 

feature encodings before being given to the models. Since all models were sigmoid or 

logit based, they output the log odds having severe chronic periodontitis which was 

transformed into probability, followed by dichotomization with a decision threshold. 

Predicted periodontal status and the probabilities outputted by the model are reported in 

Table 5.2.  

Brier score measures the average discrepancy in outputted probabilities of 

the model in a form similar to mean squared error in regression problems albeit with 

probabilities. Mixed effects logistic regression model had Brier score of 0.1664, 

recurrent neural networks had Brier score of 0.1690 and mixed effects support vector 

machine performed the worst with Brier score of 0.261. It should be noted that our 

selection for cutoff point influenced the performance of the models. For subject C at 

EGAT 2/4 (predicted probability of 0.35) and subject D at EGAT 2/3 (predicted 

probability of 0.36), mixed effects logistic regression would have incorrectly identified 

as negative if we do not reduce the value to 0.35. Machine learning models especially 

mixed-effects support vector machine tends to underestimate, i.e., predict lower 

probabilities overall.  As stated before, the decision threshold should be manipulated as 

necessary to be suitable for our goals. 

 

 

5.4 Application in real life scenarios 

Logistic regression models have been traditionally applied as scoring 

systems. Since logistic regressions are linear relationship of predictor features to the 

log-odds, the intercept of the model with the coefficients of each features multiplied 

with the features of a subject can output the logit of the subject, which in turn can be 

converted to the probability of having the condition. To assess the risk score for 

developing severe periodontitis, 

Risk score = -3.93 + (0.97 x male)  

+ (2.04 x education < High school)  

+ (1.35 x education Vocational School)  
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+ (0.29 x education Bachelor’s degree)  

+ (0.73 x Ex-smoker) + (1.68 x Current smoker)  

+ (0.50 x diabetes mellitus)  

+ (-0.06 x number of teeth) + (0.03 x plaque score) 

– where the covariate should be replaced with 1 if applicable and 0 if else. From the risk 

score, the subject’s risk of developing the condition can be calculated as   
𝑒𝑅𝑖𝑠𝑘 𝑠𝑐𝑜𝑟𝑒

1+ 𝑒𝑅𝑖𝑠𝑘 𝑠𝑐𝑜𝑟𝑒. 

With machine learning models, the concepts of coefficients are ambiguous 

to calculate manually. Instead, the models are outputted as a file format such as flask, 

pickle, or hierarchy data format ( .hdf5/ .h5py). The model can be imported in web 

services such as Amazon Web Service (AWS) or Heroku to deploy. Advantage of this 

approach is that the web application can be built to be visually appealing and easily 

applicable by the intended users. The complex applications are done in the background 

and additional processes such as data scraping and preprocessing from electronic 

medical records can be automated as well.  

With necessary internet connectivity, the model can be updated in the 

backend with new data that can also be collected with a web application. With new data, 

the effects of each predictor known as coefficients or weights can be readjusted or 

updated with new evidence. Similar systems can be built for logistic regression models 

as well, but unlike machine learning models, all the previous training data must be stored 

and trained together with the new data so that the coefficient can be updated. Of course, 

the validity of the user-inputted data would be a concern to be included as the training 

data as well as there will be privacy concern for valid data. Easy access of risk 

assessment programs can lead to overuse or apprehension of those who might not be the 

target population.   

 

 

5.5 Future Research and Study 

For both training and testing of our models, we applied data from the same 

source. For proper model evaluation, external validation using data from other centers 

or surveys is required. Data from other Thai populations as well as different countries 

or ethnicities should be used to evaluate the capability of the model to generalize. If 
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necessary, the models should be updated applying new data, especially the recurrent 

neural networks which we considered to be suffering from insufficient training class 

and insufficient timesteps to make full use of its unique capability. 

With appropriate or acceptable performance, the models should be able to 

deploy, so that they can help screening the situations where large numbers of people are 

to be periodontally examined such as public health missions. Application programming 

interfaces (APIs) can be used to scan the health information systems to screen the 

patients ahead of time. Web or desktop applications can be deployed at the stations 

where history taking interviews are done. As shown in Figure 5.5, mobile applications 

should help the staffs to apply while on the go, or even let the examinees apply by 

themselves. Additional functionality such as scoring oral hygiene, recommending oral 

hygiene regiments and dental treatment visits could be bundled together in such 

applications to encourage or positively reinforce for better oral health knowledge and 

practices. 

 

 

5.6 Conclusion 

While applying several classification models as the screening models for 

chronic periodontitis, machine learning models such as recurrent neural networks and 

mixed effects support vector machine failed to perform better than the statistical models. 

For better applications of the machine learning models, we will have to address the 

limitations as stated before. In addition, including the different type of data such as 

orthopantomograms would take advantage of the capabilities of the machine learning 

models as well as increase their classification performances. Currently, the mixed 

effects logistic regression model resulted in superior performance with 11.93 positive 

likelihood ratio. Since the model was trained and tested with the data from the same 

survey, external validation using other population is necessary. With acceptable 

performances, such screening model will be able to save time, material, and human 

resources necessary to manually measure 168 individual sites per every examinee. 
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Table 5.1 Subset of mock data samples 
ID Survey Sex Education Smoking Diabetes 

Mellitus 

Number 

of teeth 

Plaque 

score 

Diagnosis 

A 2/3 Female >  Bachelor’s 

degree 

Non-

smoker 

Negative 22 22.7 Negative 

A 2/4 Female >  Bachelor’s 

degree 

Non-

smoker 

Negative 22 31.8 Negative 

B 2/3 Male Bachelor’s 

degree 

Non-

smoker 

Negative 21 85.7 Positive 

B 2/4 Male Bachelor’s 

degree 

Non-

smoker 

Negative 21 95.2 Positive 

C 2/3 Male Bachelor’s 

degree 

Non-

smoker 

Negative 26 100 Negative 

C 2/4 Male Bachelor’s 

degree 

Non-

smoker 

Negative 25 74 Positive 

D 2/3 Male Bachelor’s 

degree 

Ex-smoker Negative 25 44 Positive 

D 2/4 Male Bachelor’s 

degree 

Ex-smoker Negative 21 50 Negative 
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Table 5.2 Predicted periodontal status and probabilities outputs of three classification 

models on the mock data samples (0.35 as decision threshold) 
ID Survey True Diagnosis MELR RNN MESVM 

A 2/3 Negative N (0.01) N (0.06) N (0.24) 

A 2/4 Negative N (0.01) N (0.03) N (0.23) 

B 2/3 Positive P (0.85) P (0.75) P (0.36) 

B 2/4 Positive P (0.88) P (0.53) P (0.36) 

C 2/3 Negative P (0.50) P (0.45) N (0.31) 

C 2/4 Positive P (0.35) N (0.23) N (0.31) 

D 2/3 Positive P (0.36) P (0.57) N (0.30) 

D 2/4 Negative P (0.46) N (0.29) N (0.31) 

Abbreviations- 

MELR = Mixed Effects Logistic Regression 

MESVM = Mixed Effects Support Vector Machine 

N = None or Non-severe chronic periodontitis 

P = Severe chronic periodontitis 

X (0.0) = Predicted diagnosis (probability of having severe chronic periodontitis) 

RNN = Recurrent Neural Networks  
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Figure 5.1 Cost function for imbalanced class 
 

 
Figure 5.2 Class weight-adjusted cost function 
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Figure 5.3 Sample weight-adjusted cost function 
 

 
Figure 5.4 Screening system in action 
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Figure 5.5 Mobile application based on the mixed effects logistic regression model 
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