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SUMMARY

This tutorial on advanced statistical methods for meta-analysis can be seen as a sequel to the recent
Tutorial in Biostatistics on meta-analysis by Normand, which focused on elementary methods. Within
the framework of the general linear mixed model using approximate likelihood, we discuss methods
to analyse univariate as well as bivariate treatment e<ects in meta-analyses as well as meta-regression
methods. Several extensions of the models are discussed, like exact likelihood, non-normal mixtures and
multiple endpoints. We end with a discussion about the use of Bayesian methods in meta-analysis. All
methods are illustrated by a meta-analysis concerning the e=cacy of BCG vaccine against tuberculosis.
All analyses that use approximate likelihood can be carried out by standard software. We demonstrate
how the models can be ?tted using SAS Proc Mixed. Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In this paper we review advanced statistical methods for meta-analysis as used in bivariate
meta-analysis [1] (that is, two outcomes per study are modelled simultaneously) and meta-
regression [2]. It can be seen as a sequel to the recent Tutorial in Biostatistics on meta-analysis
by Normand [3]. Meta-analysis is put in the context of mixed models using (approximate)
likelihood methods to estimate all relevant parameters. In the medical literature meta-analysis
is usually applied to the results of clinical trials, but the application of the theory presented in
this paper is not limited to clinical trials only. It is the aim of the paper not only to discuss
the underlying theory but also to give practical guidelines how to carry out these analyses.
As the leading example we use the meta-analysis data set of Colditz et al. [4]. This data set

is also discussed in Berkey et al. [2]. Wherever feasible, it is speci?ed how the analysis can
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be performed by using the SAS procedure Proc Mixed. The paper is organized as follows. In
Section 2 we review the concept of approximate likelihood that was introduced in the meta-
analysis setting by DerSimonian and Laird [5]. In Section 3 we review the meta-analysis
of one-dimensional treatment e<ect parameters. In Section 4 we discuss the bivariate ap-
proach [1] and its link with the concept of underlying risk as source of heterogeneity [6–10]. In
Section 5 we discuss meta-regression within the mixed model setting. Covariates considered
are aggregate measures on the study level. We do not go into meta-analysis with patient-
speci?c covariates. In principle that is not di<erent from analysing a multi-centre study [11].
In Section 6 several extensions are discussed: exact likelihood’s based on conditioning; non-
normal mixtures; multiple endpoints; other outcome measures, and other software. This is
additional material that can be skipped at ?rst reading. Section 7 is concerned with the use
of Bayesian methods in meta-analysis. We argue that Bayesian methods can be useful if they
are applied at the right level of the hierarchical model. The paper is concluded in Section 8.

2. APPROXIMATE LIKELIHOOD

The basic situation in meta-analysis is that we are dealing with n studies in which a parameter
of interest #i (i=1; : : : ; n) is estimated. In a meta-analysis of clinical trials the parameter of
interest is some measure of the di<erence in e=cacy between the two treatment arms. The
most popular choice is the log-odds ratio, but this could also be the risk or rate di<erence or
the risk or rate ratio for dichotomous outcome or similar measures for continuous outcomes
or survival data. All studies report an estimate #̂i of the true #i and the standard error si of the
estimate. If the studies only report the estimate and the p-value or a con?dence interval, we
can derive the standard error from the p-value or the con?dence interval. In the Sections 3
to 5, which give the main statistical tools, we act as if #̂i has a normal distribution with
unknown mean #i and known standard deviation si, that is

#̂i ∼ N(#i; s2i ) (1)

Moreover, since the estimates are derived from di<erent data sets, the #̂i are conditionally
independent given #i. This approximate likelihood approach goes back to the seminal paper
by DerSimonian and Laird [5]. However, it should be stressed that it is not the normality of
the frequency distribution of #̂i that is employed in our analysis. Since our whole approach
is likelihood based, we only use that the likelihood of the unknown parameter in each study
looks like the likelihood of (1). Thus, if we denote the log-likelihood of the ith study by
‘i(#), the real approximation is

‘i(#)=− 1
2
(#− #̂i)2=s2i + ci (2)

where ci is some constant that does not depend on the unknown parameter.
If in each study the unknown parameter is estimated by maximum likelihood, approximation

(2) is just the second-order Taylor expansion of the (pro?le) log-likelihood around the MLE
#̂i. The approximation (2) is usually quite good, even if the estimator #̂i is discrete. Since
most studies indeed use the maximum likelihood method to estimate the unknown parameter,
we are con?dent that (2) can be used as an approximation. In Section 6 we will discuss
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some re?nements of this approximation. In manipulating the likelihoods we can safely act as
if we assume that (1) is valid and use, for example, known results for mixtures of normal
distributions. However, we want to stress that actually we only use assumption (2).
The approach of Yusuf et al. [12], popular in ?xed e<ect meta-analysis, and of Whitehead

and Whitehead [13] are based on a Taylor expansion of the log-likelihood around the value
#=0. This is valid if the e<ects in each study are relatively small. It gives an approximation in
the line of (2) with di<erent estimators and standard errors but a similar quadratic expression
in the unknown parameter.
As we have already noted, the most popular outcome measure in meta-analysis is the log-

odds ratio. Its estimated standard error is equal to ∞ if one of the frequencies in the 2× 2
table is equal to zero. That is usually repaired by adding 0.5 to all cell frequencies. We will
discuss more appropriate ways of handling this problem in Section 6.

3. ANALYSING ONE-DIMENSIONAL TREATMENT EFFECTS

The analysis under homogeneity makes the assumption that the unknown parameter is exactly
the same in all studies, that is #1 =#2 = · · · =#n=#. The log-likelihood for # is given by

‘(#)=
∑
i
‘i(#)=−1

2
∑
i
[(#− #̂i)2=s2i + ln(s

2
i ) + ln(2�)] (3)

Maximization is straightforward and results in the well-known estimator of the common e<ect

#̂hom =
[∑

i
#̂i=s2i

]/[∑
i
1=s2i

]

with standard error

SE(#̂hom)=1

/√(∑
i
1=s2i

)

Con?dence intervals for # can be based on normal distributions, since the s2i terms are assumed
to be known. Assuming the s2i terms to be known instead of to be estimated has little impact
on the results [14]. This is the basis for the traditional meta-analysis.
The assumption of homogeneity is questionable even if it is hard to disprove for small meta-

analyses [15]. That is, heterogeneity might be present and should be part of the analysis even
if the test for heterogeneity is not signi?cant. Heterogeneity is found in many meta-analyses
and is likely to be present since the individual studies are never identical with respect to study
populations and other factors that can cause di<erences between studies.
The popular model for the analysis under heterogeneity is the normal mixture model,

introduced by DerSimonian and Laird [5], that considers the #i to be an independent random
sample from a normal population

#i ∼ N(#; �2)

Normality of this mixture is a true assumption and not a simplifying approximation. We will
further discuss it in Section 6. The resulting marginal distribution of #i is easily obtained as
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#̂i ∼ N(#; �2 + s2i ) with corresponding log-likelihood

‘(#; �2)= − 1
2
∑
i
[(#− #̂i)2=(�2 + s2i ) + ln(�

2 + s2i ) + ln(2�)] (4)

Notice that (3) and (4) are identical if �2 = 0.
This log-likelihood is the basis for inference about both parameters # and �2. Maximum

likelihood estimates can be obtained by di<erent algorithms. In the example below, it is shown
how the estimates can be obtained by using the SAS procedure Proc Mixed. If �2 were known,
the ML estimate for # would be

#̂het =
[∑

i
(#̂i=(�2 + s2i )

]/[∑
i
[1=(�2 + s2i )

]

with standard error

SE(#̂het)= 1

/√{∑
i
1=(�2 + s2i )

}

The latter can also be used if �2 is estimated and the estimated value is plugged in, as is
done in the standard DerSimonian and Laird approach.
The construction of con?dence intervals for both parameters is more complicated than in

the case of a simple sample from a normal distribution. Simple 
2- and t-distributions with
d:f := n−1 are not appropriate. In this article all models are ?tted using SAS Proc Mixed,
which gives Satherthwaite approximation based con?dence intervals. Another possibility is to
base con?dence intervals on the likelihood ratio test, using pro?le log-likelihoods. That is, the
con?dence interval consists of all parameter values that are not rejected by the likelihood ratio
test. Such con?dence intervals often have amazingly accurate coverage probabilities [16; 17].
Brockwell and Gordon [18] compared the commonly used DerSimonian and Laird method [5]
with the pro?le likelihood method. Particularly when the number of studies is modest, the
DerSimonian and Laird method had coverage probabilities considerably below 0.95 and the
pro?le likelihood method achieved the best coverage probabilities.
The pro?le log-likelihoods are de?ned by

p‘1(#)= max
�2

‘(#; �2) and p‘2(�2)= max
#

‘(#; �2)

Based on the usual 
2[1]-approximation for 2(p‘1(#̂) − p‘1(#)), the 95 per cent con?dence
interval for # is obtained as all #’s satisfying p‘1(#)¿p‘1(#̂) − 1:92 (1.92 is the 95 per
cent centile of the 
2[1] distribution 3.84 divided by 2) and similarly for �

2. Unlike the usual
con?dence interval based on Wald’s method, this con?dence interval for # implicitly accounts
for the fact that �2 is estimated.
Testing for heterogeneity is equivalent to testing H0:�2 = 0 against H1:�2¿0. The likelihood

ratio test statistic is T =2(p‘2(�̂2)−p‘2(0)). Since �2 = 0 is on the boundary of the parameter
space, T does not have a 
2[1]-distribution, but its distribution is a mixture with probabilities
half of the degenerate distribution in zero and the 
2[1]-distribution [19]. That means that the
p-value of the naive LR-test has to be halved. Once the mixed model has been ?tted, the
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following information is available at the overall level:

(i) #̂ and its con?dence interval, showing the existence or absence of an overall e<ect;
(ii) �̂2 and its con?dence interval (and the test for heterogeneity), showing the variation

between studies;
(iii) approximate 95 per cent prediction interval for the true parameter #̂new of a new

unrelated study: #̂ ± 1:96�̂ (approximate in the sense that it ignores the error in the
estimation of # and �);

(iv) an estimate of the probability of a positive result of a new study:

P(#new¿0)=Q(#̂=�̂)

(where Q is the standard normal cumulative distribution function).

The following information is available at the individual study level:

(i) posterior con?dence intervals for the true #i’s of the studies in the meta-analysis based
on the posterior distribution #i | #̂i ∼ N(#̂+Bi(#̂i− #̂); Bis2i ) with Bi= �̂2=(�̂2 + s2i ). The
posterior means or so-called empirical Bayes estimates give a more realistic view on
the results of, especially, the small studies. See the meta-analysis tutorial of Normand
[3] for more on this subject.

3.1. Example

To illustrate the above methods we make use of the meta-analysis data given by Colditz
et al. [4]. Berkey et al. [2] also used this data set to illustrate their random-e<ects regression
approach to meta-analysis. The meta-analysis concerns 13 trials on the e=cacy of BCG vaccine
against tuberculosis. In each trial a vaccinated group is compared with a non-vaccinated
control group. The data consist of the sample size in each group and the number of cases of
tuberculosis. Furthermore some covariates are available that might explain the heterogeneity
among studies: geographic latitude of the place where the study was done; year of publication,
and method of treatment allocation (random, alternate or systematic). The data are presented
in Table I.
We stored the data in an SAS ?le called BCG data.sd2 (see Data step in SAS commands

below). The treatment e<ect measure we have chosen is the log-odds ratio, but the analysis
could be carried out in the same way for any other treatment e<ect measure.

3.1.1. Fixed e1ects model. The analysis under the assumption of homogeneity is easily per-
formed by hand. Only for the sake of continuity and uniformity do we also show how the
analysis can be carried out using SAS software.
The ML-estimate of the log-odds ratio for trial i is

lnORi= log
(
YA; i=(nA; i − YA; i)
YB; i=(nB; i − YB; i)

)

where YA; i and YB; i are the number of disease cases in the vaccinated (A) and non-vaccinated
group (B) in trial i, and nA; i and nB; i the sample sizes. The corresponding within-trial variance,
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Table I. Example: data from clinical trials on e=cacy of BCG vaccine in the prevention of tuberculosis [2; 4].

Trial Vaccinated Not vaccinated ln(OR) Latitude Year Allocation∗

Disease No disease Disease No disease

1 4 119 11 128 −0:93869 44 48 Random
2 6 300 29 274 −1:66619 55 49 Random
3 3 228 11 209 −1:38629 42 60 Random
4 62 13536 248 12619 −1:45644 52 77 Random
5 33 5036 47 5761 −0:21914 13 73 Alternate
6 180 1361 372 1079 −0:95812 44 53 Alternate
7 8 2537 10 619 −1:63378 19 73 Random
8 505 87886 499 87892 0.01202 13 80 Random
9 29 7470 45 7232 −0:47175 27∗ 68 Random
10 17 1699 65 1600 −1:40121 42 61 Systematic
11 186 50448 141 27197 −0:34085 18 74 Systematic
12 5 2493 3 2338 0.44663 33 69 Systematic
13 27 16886 29 17825 −0:01734 33 76 Systematic

∗This was actually a negative number; we used the absolute value in the analysis.

computed from the inverse of the matrix of second derivatives of the log-likelihood, is

var(lnORi)=
1
YA; i

+
1

nA; i − YA; i
+

1
YB; i

+
1

nB; i − YB; i

which is also known as Woolf’s formula.
These within-trial variances were stored in the same SAS data ?le as above, called

BCG data.sd2. In the analysis, these variances are assumed to be known and ?xed.

# THE DATA STEP;

data BCG_data;
input TRIAL VD VWD NVD NVWD LATITUDE YEAR ALLOC;
LN_OR=log((VD/VWD)/(NVD/NVWD));
EST=1/VD+1/VWD+1/NVD+1/NVWD;
datalines;
1 4 119 11 128 44 48 1
2 6 300 29 274 55 49 1
3 3 228 11 209 42 60 1
4 62 13536 248 12619 52 77 1
5 33 5036 47 5761 13 73 2
6 180 1361 372 1079 44 53 2
7 8 2537 10 619 19 73 1
8 505 87886 499 87892 13 80 1
9 29 7470 45 7232 27 68 1

10 17 1699 65 1600 42 61 3
11 186 50448 141 27197 18 74 3
12 5 2493 3 2338 33 69 3
13 27 16886 29 17825 33 76 3
;
proc print;run;

Copyright ? 2002 John Wiley & Sons, Ltd. Statist. Med. 2002; 21:589–624
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Running these SAS commands gives the following output:

OBS TRIAL VD VWD NVD NVWD LATITUDE YEAR ALLOC LN_OR EST

1 1 4 119 11 128 44 48 1 -0.93869 0.35712
2 2 6 300 29 274 55 49 1 -1.66619 0.20813
3 3 3 228 11 209 42 60 1 -1.38629 0.43341
4 4 62 13536 248 12619 52 77 1 -1.45644 0.02031
5 5 33 5036 47 5761 13 73 2 -0.21914 0.05195
6 6 180 1361 372 1079 44 53 2 -0.95812 0.00991
7 7 8 2537 10 619 19 73 1 -1.63378 0.22701
8 8 505 87886 499 87892 13 80 1 0.01202 0.00401
9 9 29 7470 45 7232 27 68 1 -0.47175 0.05698

10 10 17 1699 65 1600 42 61 3 -1.40121 0.07542
11 11 186 50448 141 27197 18 74 3 -0.34085 0.01253
12 12 5 2493 3 2338 33 69 3 0.44663 0.53416
13 13 27 16886 29 17825 33 76 3 -0.01734 0.07164

The list of variables matches that in Table I (VD=vaccinated and diseased, VWD=
vaccinated and without disease, NVD=not vaccinated and diseased, NVWD=not vaccinated
and without disease). The variable ln or contains the estimated log-odds ratio of each trial
and the variable est contains its variance per trial. In the Proc Mixed commands below, SAS
assumes that the within trial variances are stored in a variable with the name ‘est’.

# THE FIXED EFFECTS MODEL;
Proc mixed method =ml data=BCG data; #call SAS procedure;
class trial; #speci?es ‘trial’ as classi?cation variable;
model ln or=/ s ; #an intercept only model; print the solution s;
repeated /group=trial; #each trial has its own within-trial variance;
parms / parmsdata=BCG data # the parmsdata-option reads in the variable EST

(indicating the within-trial variances) from
the dataset BCG data.sd2;

eqcons=1 to 13; # the within trial variances are considered to
be known and must be kept constant;

run;

Running this analysis gives the following output:

The MIXED Procedure
(...)

Solution for Fixed Effects

Effect Estimate Std Error DF t Pr > |t| Alpha Lower Upper
INTERCEPT -0.43627138 0.04227521 12 -10.32 0.0001 0.05 -0.5284 -0.3442

The estimate of the common log-odds ratio is equal to −0:436 with standard error =0:042
leading to a 95 per cent Wald based con?dence interval of the log-odds ratio from −0:519
to −0:353. (Although it seems overly precise, we will present results to three decimals, since
these are used in further calculations and to facilitate comparisons between results of di<erent
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models.) This corresponds to an estimate of 0.647 with a 95 per cent con?dence interval
from 0.595 to 0.703 for the odds ratio itself. Thus we can conclude that vaccination is
bene?cial.
The con?dence intervals and p-values provided by SAS Proc Mixed are based on the

t-distribution rather than on the standard normal distribution, as is done in the standard like-
lihood approach. The number of degrees of freedom of the t-distribution is determined by
Proc Mixed according to some algorithm. One can choose between several algorithms, but
one can also specify in the model statement the number of degrees of freedom to be used for
each covariable, except for the intercept. To get the standard Wald con?dence interval and
p-value for the intercept, the number of degrees of freedom used for the intercept should be
speci?ed to be ∞, which can be accomplished by making a new intercept covariate equal
to 1 and subsequently specifying ‘no intercept’ (‘noint’). The SAS statement to be used is
then:

model ln or = int = s cl noint ddf = 1000;

(the variable ‘int’ is a self-made intercept variable equal to 1).

3.1.2. Simple random e1ects model, maximum likelihood. The analysis under heterogeneity
can be carried out by executing the following SAS statements. Unlike the previous model
where we read in the within-trial variances from the data?le, we now specify the within-trial
variances explicitly in the ‘parms’ statement. This has to be done because we want to de?ne
a grid of values for the ?rst covariance parameter, that is, the between-trial variance, to get
the pro?le likelihood function for the between-trial variance to get its likelihood ratio based
95 per cent con?dence interval. Of course, one could also give only one starting value and
read the data from an SAS data?le like we did before.

# THE RANDOM EFFECTS MODEL (MAXIMUM LIKELIHOOD);

Proc mixed cl method=ml data=BCG data; #call of procedure; ‘cl’ asks for con?dence
intervals of covariance parameters;

class trial; # trial is classi?cation variable;
model ln or= / s cl; #an intercept only model. print ?xed e<ect

solution ‘s’ and its con?dence limits ‘cl’;
random int/ subject=trial s; # trial is speci?ed as random e<ect; ‘s’

asks for the empirical Bayes estimates;
repeated /group=trial; #each trial has its own within trial

variance;
parms (0.01 to 2.00 by 0.01)(0.35712) #de?nes grid of values for between trial
(0.20813)(0.43341)(0.02031)(0.05195) variance (from 0.01 to 1.00), followed by the
(0.00991)(0.22701)(0.00401)(0.05698) 13 within trial variances which are assumed
(0.07542)(0.01253)(0.53416)(0.07164) to be known and must be kept ?xed;
/eqcons=2 to 14;
make ‘Parms’ out=Parmsml; # in the dataset ‘Parms’ the maximum log

likelihood for each value of the grid
speci?ed for the between trial variance is
stored, in order to read o< the pro?le
likelihood based 95% CI for the between trial
variance;

run;
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Figure 1. The 95 per cent con?dence interval of the between-trial variance �2 based on the pro?le
likelihood funtion: (0:12; 0:89).

Running this program gives the following output:

The MIXED Procedure

(...)
Covariance Parameter Estimates (MLE)

Cov Parm Subject Group Estimate Alpha Lower Upper
INTERCEPT TRIAL 0.30245716 0.05 0.1350 1.1810

(...)

Solution for Fixed Effects

Effect Estimate Std Error DF t Pr > |t| Alpha Lower Upper
INTERCEPT -0.74197023 0.17795376 12 -4.17 0.0013 0.05 -1.1297 -0.3542

The ML-estimate of the mean log-odds ratio is −0:742 with standard error 0.178. The standard
Wald based 95 per cent con?dence interval is −1:091 to −0:393. (SAS Proc Mixed gives a
slightly wider con?dence interval based on a t-distribution with d:f :=12). This corresponds
to an estimated odds ratio of 0.476 with a 95 per cent con?dence interval from 0.336 to
0.675.
The ML-estimate of the between-trial variance �2 is equal to 0.302. For each value of the

grid speci?ed in the ‘Parms’ statement for the between-trial variance (in the example the grid
runs from 0.01 to 2.00 with steps of 0.01), the maximum log-likelihood value is stored as
variable ‘LL’ in the SAS ?le ‘Parmsml.sd2’. Plotting the maximum log-likelihood values
against the grid of between-trial variances gives the pro?le likelihood plot for the between-trial
variance presented in Figure 1. From this plot or a listing of the data set ‘Parmsml.sd2’ one
can read o< the pro?le likelihood based 95 per cent con?dence interval for the between-trial
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Figure 2. The 95 per cent con?dence interval of the treatment e<ect (log-odds ratio) � based on the
pro?le likelihood funtion: (−1:13;−0:37).

variance �2. This is done by looking for the two values of the between-trial variance with
a corresponding log-likelihood of 1.92 lower than the maximum log-likelihood. The 95 per
cent pro?le likelihood based con?dence interval for �2 is (0.12, 0.89). (SAS Proc Mixed gives
a Satterthwaite approximation based 95 per cent con?dence interval running from 0.135 to
1.180.)
Notice that by comparing the maximum log-likelihood of this model with the previous

?xed e<ects model, one gets the likelihood ratio test for homogeneity (the p-value has to be
halved, because �2 = 0 is on the boundary of the parameter space).
A pro?le likelihood based con?dence interval for the mean treatment e<ect # can be made

by trial and error by de?ning the variable y=ln or-c as dependent variable for various values
of c and specifying a model without intercept (add ‘noint’ after the slash in the model state-
ment). Then look for the two values of c that decrease the maximum log-likelihood by 1.92.
The pro?le log-likelihood plot for # is given in Figure 2. The 95 per cent con?dence interval
for the log-odds ratio # is (−1:13;−0:37), slightly wider than the simple Wald approximation
given above. This corresponds with a 95 per cent con?dence interval for the odds ratio of
0.323 to 0.691.

Remark
In Proc Mixed one can also choose the restricted maximum likelihood (REML) estimate
(specify method=reml instead of method=ml). Then the resulting estimate for the between-
trial variance �2 is identical to the iterated DerSimonian–Laird estimator [5]. However, in this
case the pro?le likelihood function should not be used to make a con?dence interval for the
log-odds ratio #. The reason is that di<erences between maximized REML likelihoods cannot
be used to test hypotheses concerning ?xed parameters in a general linear mixed model [20].

The observed and corresponding empirical Bayes estimated log-odds ratios with their 95
per cent standard Wald, respectively, the 95 per cent posterior con?dence intervals per trial,
are presented in Figure 3. This ?gure shows the shrinkage of the empirical Bayes estimates
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Figure 3. Forrest plot with the estimated log-odds ratios of tuberculosis with their 95 per cent con?dence
intervals in the trials included in the meta-analysis. The dashed horizontal lines indicate the standard
Wald con?dence intervals. The solid horizontal lines indicate the posterior or so-called empirical Bayes
con?dence intervals. The vertical line indicates the ML-estimate of the common (true) log-odds ratio.
Below the ?gure the 95 per cent con?dence interval for the mean log-odds ratio and the 95 per cent

prediction interval for the true log-odds ratio are presented.

towards the estimated mean log-odds ratio and their corresponding smaller posterior con?dence
intervals. The overall con?dence interval of the mean true treatment e<ect and the overall
prediction interval of the true treatment e<ect are given at the bottom of the ?gure. The 95
per cent prediction interval indicates the interval in which 95 per cent of the true treatment
e<ects of new trials are expected to fall. It is calculated as the ML-estimate plus and minus
1.96 times the estimated between-trial standard deviation s and is here equal to (−1:820 to
0.336). The estimated probability for a new trial having a positive true treatment e<ect is
Q(0:742=0:302)=0:993.

4. BIVARIATE APPROACH

In the previous section the parameter of interest was one-dimensional. In many situations it
can be bivariate or even multivariate, for instance when there are more treatment groups or
more outcome variables. In this section we discuss the case of a two-dimensional parameter
of interest. We introduce the bivariate approach with special reference to the situation where
one is interested in ‘control rate regression’, that is, relating the treatment e<ect size to the
risk of events in the control group. However, the approach applies generally.
Many studies show considerable variation in what is called the baseline risk. The baseline

risk indicates the risk for patients under the control condition, which is the average risk of
the patients in that trial when the patients were treated with the control treatment. One might
wonder if there is a relation between treatment e<ect and baseline risk. Considering only the
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Figure 4. L’AbbUe plot of observed log(odds) of the not-vaccinated trial arm versus the vaccinated
trial arm. The size of the circle is an indication for the inverse of the variance of the log-odds ratio
in that trial. Below the x=y line, the log-odds in the vaccinated are lower than the log-odds in the
not-vaccinated arm, indicating that the vaccination works. On or above the x=y line, vaccination does

not work bene?cially.

di<erences between the study arms may hide a lot information. Therefore, we think it is wise
to consider the pair of outcomes of the two treatments. This is nicely done in the l’AbbUe plot
[21], that gives a bivariate representation of the data by plotting the log-odds in arm A versus
the log-odds in arm B. We show the plot in Figure 4 for the data of our example with A the
vaccinated arm and B the not-vaccinated arm. The size of each circle represents the inverse
of the variance of the log-odds ratio in that trial. Points below the line of identity correspond
to trials with an observed positive e<ect of vaccination.
The graph shows some e<ect of vaccination especially at the higher incidence rates. A

simple (approximate) bivariate model for any observed pair of arm speci?c outcome measures
!i=(!̂A; i ; !̂B; i) with standard errors (sA; i ; sB; i) in trial i is

(
!̂A; i
!̂B; i

)
∼N

((
!A; i
!B; i

)
;
(
s2A; i 0
0 s2B; i

))
(i=1; : : : ; n)

where !i=(!A; i ; !B; i) is the pair of true arm speci?c outcome measures for trial i. The
conditional independence of !̂A and !̂B given the true !A and !B is a consequence of the
randomized parallel study design and the fact that !A and !B are arm speci?c. In general,
for instance in a cross-over study, or when !A and !B are treatment e<ects on two di<erent
outcome variables, the estimates might be correlated.
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The mixed model approach assumes the pair (!A; i ; !B; i) to follow a bivariate normal dis-
tribution, where, analogous to the univariate random e<ects model of Section 3, the true
outcome measures for both arms in the trials are normally distributed around some common
mean treatment-arm outcome measure with a between-trial covariance matrix V:(

!A; i

!B; i

)
∼N

((
!A
!B

)
;V

)
with V=

(
VAA VAB
VAB VBB

)

VAA and VBB describe the variability among trials in true risk under the vaccination and
control condition, respectively. VAB is the covariance between the true risk in the vaccination
and control group.
The resulting marginal model is

(
!̂A; i
!̂B; i

)
∼N

((
!A

!B

)
;V+ Ci

)

with Ci the diagonal matrix with the s2i ’s.
Maximum likelihood estimation for this model can be quite easily carried out by a self-

made program based on the EM algorithm as described in reference [1], but more practically
convenient is to use appropriate mixed model software from statistical packages, such as the
SAS procedure Proc Mixed.
Once the model is ?tted, the following derived quantities are of interest:

(i) The mean di<erence (!A −!B) and its standard error

√{(var(!A) + var(!B)− 2 cov(!A; !B))}

(ii) The population variance of the di<erence var(!A −!B)=VAA + VBB − 2VAB.
(iii) The shape of the bivariate relation between the (true) !A and !B. That can be

described by ellipses of equal density or by the regression lines of !A on !B and of
the !B on !A. These lines can be obtained from classical bivariate normal theory.
For example, the regression line of !A on !B has slope  =VAB=VBB and residual
variance VAA − V2AB=VBB. The regression of the di<erence (!A − !B) on either !A
or !B can be derived similarly. At the end of this section we come back to the
usefulness of these regression lines.

The standard errors of the regression slopes can be calculated from the covariance matrix of
the estimated covariance parameters by the delta method or by Fieller’s method [22].

4.1. Example (continued): bivariate random e1ects model

As an example we carry out a bivariate meta-analysis with !A and !B the log-odds of
tuberculosis in the vaccinated and the not-vaccinated control arm, respectively. To execute a
bivariate analysis in the SAS procedure Proc Mixed, we have to change the structure of the
data set. Each treatment arm of a trial becomes a row in the data set, resulting in twice as
many rows as in the original data set. The dependent variable is now the estimated log-odds
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in a treatment arm instead of the log-odds ratio. The new data set is called BCGdata2.sd2 and
the observed log-odds is called lno. The standard error of the observed log-odds, estimated
by taking the square root of minus the inverse of the second derivative of the log-likelihood,
is equal to

√(
1
x +

1
n−x

)
, where n is the sample size of a treatment arm and x is the number

of tuberculosis cases in a treatment arm. These standard errors are also stored in the SAS
data set covvars2.sd2.
The bivariate random e<ects analysis can be carried out by running the SAS commands

given below. In the data step, the new data set BCGdata2.sd2 is made out of the data set
BCGdata2.sd2, and the covariates are de?ned on trial arm level. The variable exp is 1 for the
vaccinated (experimental) arms and 0 for the not-vaccinated (control) arms. The variable con
is de?ned analogously with experimental and control reversed. The variable arm identi?es the
26 unique treatment arms from the 13 studies (here from 1 to 26); latcon, latexp, yearcon
and yearexp are covariates to be used later. For numerical reasons we centralized the four
variables latcon, latexp, yearcon and yearexp by substracting the mean.

# THE DATA STEP (BIVARIATE ANALYSIS)

data bcgdata2;set bcg_data;
treat=1; lno=log(vd/vwd); var=1/vd+1/vwd; n=vd+vwd; output;
treat=0; lno=log(nvd/nvwd); var=1/nvd+1/nvwd; n=nvd+nvwd; output;
keep trial lno var n treat latitude--alloc;
run;
data bcgdata2;set bcgdata2;
arm=_n_; exp=(treat=1); con=(treat=0);
latcon=(treat=0)*(latitude-33); latexp=(treat=1)*(latitude-33);
yearcon=(treat=0)*(year-66); yearexp=(treat=1)*(year-66);
proc print noobs;run;

Running these SAS commands gives the following output:

L
A Y Y
T L L E E

T I A T A A A A
R T Y L R T T R R
I U E L E L V A E C C E C E
A D A O A N A R X O O X O X
L E R C T O R M P N N P N P

1 44 48 1 1 -3.39283 0.25840 1 1 0 0 11 0 -18
1 44 48 1 0 -2.45413 0.09872 2 0 1 11 0 -18 0
2 55 49 1 1 -3.91202 0.17000 3 1 0 0 22 0 -17
2 55 49 1 0 -2.24583 0.03813 4 0 1 22 0 -17 0
3 42 60 1 1 -4.33073 0.33772 5 1 0 0 9 0 -6
3 42 60 1 0 -2.94444 0.09569 6 0 1 9 0 -6 0
4 52 77 1 1 -5.38597 0.01620 7 1 0 0 19 0 11
4 52 77 1 0 -3.92953 0.00411 8 0 1 19 0 11 0
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5 13 73 2 1 -5.02786 0.03050 9 1 0 0 -20 0 7
5 13 73 2 0 -4.80872 0.02145 10 0 1 -20 0 7 0
6 44 53 2 1 -2.02302 0.00629 11 1 0 0 11 0 -13
6 44 53 2 0 -1.06490 0.00361 12 0 1 11 0 -13 0
7 19 73 1 1 -5.75930 0.12539 13 1 0 0 -14 0 7
7 19 73 1 0 -4.12552 0.10162 14 0 1 -14 0 7 0
8 13 80 1 1 -5.15924 0.00199 15 1 0 0 -20 0 14
8 13 80 1 0 -5.17126 0.00202 16 0 1 -20 0 14 0
9 27 68 1 1 -5.55135 0.03462 17 1 0 0 -6 0 2
9 27 68 1 0 -5.07961 0.02236 18 0 1 -6 0 2 0

10 42 61 3 1 -4.60458 0.05941 19 1 0 0 9 0 -5
10 42 61 3 0 -3.20337 0.01601 20 0 1 9 0 -5 0
11 18 74 3 1 -5.60295 0.00540 21 1 0 0 -15 0 8
11 18 74 3 0 -5.26210 0.00713 22 0 1 -15 0 8 0
12 33 69 3 1 -6.21180 0.20040 23 1 0 0 0 0 3
12 33 69 3 0 -6.65844 0.33376 24 0 1 0 0 3 0
13 33 76 3 1 -6.43840 0.03710 25 1 0 0 0 0 10
13 33 76 3 0 -6.42106 0.03454 26 0 1 0 0 10 0

#THE PROCEDURE STEP (BIVARIATE RANDOM EFFECTS ANALYSIS)
Proc mixed cl method=ml data=BCGdata2 #call procedure; ‘asycov’ asks for
asycov; asymptotic covariance matrix of covariance

parameters
class trial arm; # trial and arm are classi?cation variables;
model lno= exp con / noint s cl covb #model with indicator variables ‘exp’ and
ddf=1000, 1000; ‘con’ as explanatory variables for log-odds;

con?dence intervals and p-values for
coe=cients of ‘exp’ and ‘con’ should be
based on standard normal distribution (i.e.
t-distribution with df =∞). ‘covb’ asks for
covariance matrix of ?xed e<ects
parameters.

random exp con/ subject=trial type=un s; #experimental and control treatment are
random e<ects, possibly correlated within a
trial, and independent between trials;
covariance matrix (V) is unstructured; print
empirical Bayes estimates ‘s’;

repeated /group=arm; #each study-arm in each trial has its own
within study-arm variance (matrix Ci); within
study estimation errors are independent
(default);

estimate ‘difference’ exp 1 con -1/cl # the ‘estimate’ command produces estimates
df=1000; of linear combinations of the ?xed

parameters with standard error computed from
the covariance matrix of the estimates. Here
we ask for the estimate of mean log-odds
ratio;

parms /parmsdata=covvars2 eqcons=4 to 29; #data ?le covvars2.sd2 contains the
variable ‘est’ with starting values for the
three covariance parameters of the random
e<ects together with the 26 within study-arm
variances. The latter are assumed to be
known and should be kept ?xed;

run;
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Running this program gives the following output:

The MIXED Procedure

(...)
Covariance Parameter Estimates (MLE)

Cov Parm Subject Group Estimate Alpha Lower Upper
UN(1,1) TRIAL 1.43137384 0.05 0.7369 3.8894
UN(2,1) TRIAL 1.75732532 0.05 0.3378 3.1768
UN(2,2) TRIAL 2.40732608 0.05 1.2486 6.4330

(...)

Solution for Fixed Effects

Effect Estimate Std Error DF t Pr > |t| Alpha Lower Upper
EXP -4.83374538 0.33961722 1000 -14.23 0.0001 0.05 -5.5002 -4.1673
CON -4.09597366 0.43469692 1000 -9.42 0.0001 0.05 -4.9490 -3.2430

Covariance Matrix for Fixed Effects

Effect Row COL1 COL2
EXP 1 0.11533985 0.13599767
CON 2 0.13599767 0.18896142

(...)
ESTIMATE Statement Results

Parameter Estimate Std Error DF t Pr > |t| Alpha Lower Upper
difference -0.73777172 0.17973848 1000 -4.10 0.0001 0.05 -1.0905 -0.3851

The ?xed parameter estimates !̂=(!̂A; !̂B)= (−4:834;−4:096) represent the estimated mean
log-odds in the vaccinated and non-vaccinated group, respectively. The between-trial estimated
variance of the log-odds is V̂AA =1:431 in the vaccinated groups and V̂BB =2:407 in the not-
vaccinated groups. The between-trial covariance is estimated to be V̂AB =1:757. Thus, the esti-
mated correlation between the true vaccinated and true control log-odds is V̂AB=(

√
V̂AA ·√V̂BB)

=0:947. The estimated covariance matrix for the ML-estimates !̂B and !̂A is(
var(!̂A) cov(!̂A; !̂B)

cov(!̂B; !̂A) var(!̂B)

)
=
(
0:115 0:136
0:136 0:189

)

The estimated mean vaccination e<ect, measured as the log-odds ratio, is equal to (!̂A −
!̂B)= (−4:834−(−4:096))=−0:738. The standard error of the mean vaccination e<ect is equal
to

√{var(!̂A) + var(!̂B)− 2 cov(!̂A; !̂B)}=√
(0:115 + 0:189− 2 · 0:136)=0:180, almost

identical to the result of the univariate mixed model. This corresponds to an estimated odds
ratio of exp(−0:738)=0:478 with a 95 per cent con?dence interval equal to (0:336; 0:680),
again strongly suggesting an average bene?cial vaccination e<ect. The slope of the regression
line to predict the log-odds in the vaccinated group from the log-odds in the not-vaccinated
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Figure 5. The 95 per cent coverage region for the pairs of true log-odds under vaccination and
non-vaccination. The diagonal line is the line of equality between the two log-odds. Observed data
from the trials are indicated with ◦, the empirical Bayes estimates are with �. The common mean is
indicated with the • central in the plot. The ellipse is obtained from a line plot based on the equation

(x − !̂)V̂−1(x − !̂)′ = 5:99.

group is equal to  AB = V̂AB=V̂BB = (1:757=2:407)=0:730. The slope of the reverse relation-
ship is equal to  BA = V̂AB=V̂AA = (1:757=1:431)=1:228. The variance of the treatment ef-
fect, measured as the log-odds ratio, calculated from V̂ is (1:431+ 2:407− 2 · 1:757)=0:324,
which is only slightly di<erent from what we found earlier in the univariate random ef-
fects analysis. The conditional variance of the true log-odds, and therefore also of the log-
odds ratio, in the vaccinated group given the true log-odds in the not-vaccinated group is
(VAA − V2

AB=VBB)= (1:431 − 1:7572=2:407)=0:149, which is interpreted as the variance be-
tween treatment e<ects among trials with the same baseline risk. So baseline risk, measured
as the true log-odds in the not-vaccinated group, explains (0:324− 0:149)=0:324=54 per cent
of the heterogeneity in vaccination e<ect between the trials. The 95 per cent coverage re-
gion of the estimated bivariate distribution can be plotted in the so-called l‘AbbUe plot [21] in
Figure 5.
Figure 5 nicely shows that the vaccination e<ect depends on the baseline risk (log-odds

in not-vaccinated group) and that the heterogeneity in the di<erence between the log-odds in
the vaccinated versus the not-vaccinated treatment arms is for a large part explained by the
regression coe=cient being substantially smaller than 1. It also shows the shrinkage of the
empirical Bayes estimates towards the main axis of the ellipse. In this example we speci?ed
the model in Proc Mixed as a model with two random intercepts in which the ?xed parameters
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correspond to !A and !B. An alternative would be to specify the model as a random-intercept
random-slope model, in which the ?xed parameters correspond to !B and the mean treatment
e<ect !A −!B. Then the SAS commands should be modi?ed as follows:

model lno=treat/s cl covb ddf=1000;
random int treat/subject=trial type=un s;

Here int refers to a random trial speci?c intercept.

4.2. Relation between e1ect and baseline risk

The relation between treatment e<ect and baseline risk has been very much discussed in the
literature [6–9; 23–30]. There are two issues that complicate the matter:

1. The relation between ‘observed di<erence A−B’ and ‘observed baseline risk B’ is prone
to spurious correlation, since the measurement error in the latter is negatively correlated
with measurement error in the ?rst. It would be better to study B versus A or B − A
versus (A+B)=2.

2. Even in the regression of ‘observed risk in group A’ on ‘observed baseline risk in group
B’, which is not hampered by correlated measurement errors, the estimated slope is
attenuated due to measurement error in the observed baseline risk [31].

For an extensive discussion of these problems see the article of Sharp et al. [32].
In dealing with measurement error there are two approaches [31; 33]:

(i) The functional equation approach: true regressors as nuisance parameters.
(ii) The structural equation approach: true regressors as random quantities with an un-

known distribution.

The usual likelihood theory is not guaranteed to work for the functional equation approach
because of the large number of nuisance parameters. The estimators may be inconsistent or
have the wrong standard errors. The bivariate mixed model approach to meta-analysis used in
this paper is in the spirit of the structural approach. The likelihood method does work for the
structural equation approach, so in this respect our approach is safe. Of course, the question of
robustness of the results against misspeci?cation of the mixing distribution is raised. However,
Verbeke and Lesa<re [34] have shown that, in the general linear mixed model, the ?xed
e<ect parameters as well as the covariance parameters are still consistently estimated when
the distribution of the random e<ects is misspeci?ed, so long as the covariance structure is
correct. Thus our approach yields (asymptotically) unbiased estimates of slope and intercept
of the regression line even if the normal distribution assumption is not ful?lled, although the
standard errors might be wrong. Verbeke and Lesa<re [34] give a general method for robust
estimation of the standard errors.
The mix of many ?xed and a few random e<ects as proposed by Thompson et al. [8] and

the models of Walter [9] and Cook and Walter [29] are more in the spirit of the functional
approach. These methods are meant to impose no conditions on the distribution of the true
baseline risks. The method of Walter [9] was criticized by Bernsen et al. [35]. Sharp and
Thompson [30] use other arguments to show that Walter’s method is seriously Wawed. In a
letter to the editor by Van Houwelingen and Senn [36] following the article of Thompson
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et al. [8], Van Houwelingen and Senn [36] argue that putting Bayesian priors on all nuisance
parameters, as done by Thompson et al., does not help solving the inconsistency problem.
This view is also supported in the chapter on Bayesian methods in the book of Carroll
et al. [31]. It would be interesting to apply the ideas of Caroll et al. [31] in the setting of
meta-analysis, but that is beyond the scope of this paper. Arends et al. [10] compare, in a
number of examples, the approach of Thompson et al. [8] with the method presented here
and the results were in line with the remarks of Van Houwelingen and Senn [36]. Sharp and
Thompson [30], comparing the di<erent approaches in a number of examples, remark that
whether or not to assume a distribution for the true baseline risks remains a debatable issue.
Arends et al. [10] also compared the approximate likelihood method as presented here with

an exact likelihood approach where the parameters are estimated in a Bayesian manner with
vague priors and found no relevant di<erences.

5. META-REGRESSION

In case of substantial heterogeneity between the studies, it is the statistician’s duty to explore
possible causes of the heterogeneity [15; 37–39]. In the context of meta-analysis that can
be done by covariates on the study level that could ‘explain’ the di<erences between the
studies. The term meta-regression to describe such analysis goes back to papers by Bashore
et al. [40], Jones [41], Greenland [42] and Berlin and Antman [37]. We consider only analyses
at the aggregated meta-analytic level. Aggregated information (mean age, percentage males)
can describe the di<erences between studies. We will not go into covariates on the individual
level. If such information exists, the data should be analysed on the individual patient level by
hierarchical models. That is possible and a sensible thing to do, but beyond the scope of this
paper. We will also not consider covariates on the study arm level. That can be relevant in non-
balanced observational studies. Such covariates could both correct the treatment e<ect itself in
case of confounding as well as explain existing heterogeneity between studies. Although the
methods presented in this paper might be applied straightforwardly, we will restrict attention
to balanced studies in which no systematic di<erence between the study arms is expected.
Since the number of studies in a meta-analysis is usually quite small, there is a great danger

of over?tting. The rule of thumb of one explanatory variable for each 5 (10) ‘cases’ leaves
only room for a few explanatory variables in a meta-regression. In the example we have three
covariates available: latitude; year of study, and method of treatment allocation. Details are
given in Table I.
In the previous section we have seen that heterogeneity between studies can be partly

explained by di<erences in baseline risk. Thus, it is also important to investigate whether
covariates on the study level are associated with the baseline risk. That asks for a truly
multivariate regression with a two-dimensional outcome, but we will start with the simpler
regression for the one-dimensional treatment e<ect di<erence measure.

5.1. Regression for di1erence measure

Let Xi stand for the (row)vector of covariates of study i including the constant term. Meta-
regression relates the true di<erence #i to the ‘predictor’ Xi . This relation cannot be expected
to be perfect; there might be some residual heterogeneity that could be modelled by a normal
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distribution once again, that is #i ∼ N(Xi ; �2). Taking into account the imprecision of the
observed di<erence measure #̂i we get the marginal approximate model

#̂i ∼ N(Xi ; �2 + s2i )

This model could be ?tted by iteratively reweighted least squares, where a new estimate of
�2 is used in each iteration step or by full maximum likelihood with appropriate software. In
the following we will describe how the model can be ?tted by SAS.

5.2. Example (continued)

A graphical presentation of the data is given in Figure 6. Latitude and year of publication
both seem to be associated with the log-odds ratio, while latitude and year are also correlated.
Furthermore, at ?rst sight, the three forms of allocation seem to have little di<erent average
treatment e<ects.

5.2.1. Regression on latitude. The regression analysis for the log-odds ratio on latitude can
be carried out by running the following mixed model in SAS:

Proc mixed cl method=ml #call procedure;
data=BCG data;
class trial; # trial is classi?cation variable;
model ln or=latitude / s cl covb; # latitude is only predictor variable;
random int/ subject=trial s; #random trial e<ect;
repeated /group=trial; #each trial has its own within study

variances;
parms /parmsdata=covvars3 eqcons=2 to #data set covvars3 contains a starting value
14; for between study variance and 13 within

study variances which should be kept ?xed;
run;

Running this program gives the following output:
The MIXED Procedure

(...)
Covariance Parameter Estimates (MLE)

Cov Parm Subject Group Estimate Alpha Lower Upper
INTERCEPT TRIAL 0.00399452 0.05 0.0004 1.616E29

(...)

Solution for Fixed Effects

Effect Estimate Std Error DF t Pr > |t| Alpha Lower Upper
INTERCEPT 0.37108745 0.10596655 11 3.50 0.0050 0.05 0.1379 0.6043
LATITUDE -0.03272329 0.00337134 0 -9.71 . 0.05 . .

Covariance Matrix for Fixed Effects

Effect Row COL1 COL2
INTERCEPT 1 0.01122891 -0.00031190
LATITUDE 2 -0.00031190 0.00001137
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Figure 6. Graphical relationships between the variables with a weighted least squares regression line.
The size of the circle corresponds to the inverse variance of the log-odds ratio in that trial.

The residual between-study variance in this analysis turns out to be 0.004, which is dramati-
cally smaller than the between-study variance of 0.302 in the random e<ect model above with-
out the covariate latitude in the model. Thus latitude explains 98.7 per cent of the between-trial
variance in treatment e<ects di<erences. The regression coe=cients for the intercept and for
latitude are 0.371 (standard error =0:106) and −0:033 (standard error =0:003), respectively.
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The estimated correlation between these estimated regression coe=cients is
−0:873.
Just for comparison we give the results of an ordinary weighted linear regression. The

weights are equal to the inverse squared standard error of the log-odds ratio, instead of
the correct weights equal to the inverse squared standard error of the log-odds ratio plus �̂2.
The intercept was 0.395 (SE=0:124) and the slope −0:033 (SE=0:004). The results are only
slightly di<erent, which is explained by the very small residual between-study variance.

5.2.2. Regression on year. Running the same model as above, only changing latitude into
year, the residual between-study variance becomes 0.209. Thus year of publication explains
30.8 per cent of the between-trial variance in treatment e<ects di<erences, much less than the
variance explained by the covariate latitude. The regression coe=cients for the intercept and
for year are −2:800 (standard error =1:031) and 0.030 (standard error =0:015), respectively.
The estimated correlation between these estimated regression coe=cients is −0:989.
Again, just for comparison, we also give the results of the ordinary weighted linear regres-

sion. The intercept was −2:842 (SE=0:876) and the slope 0.033 (SE=0:012). Like in the
previous example, the di<erences are relatively small.

5.2.3. Regression on allocation. Running the model with allocation as only (categorical)
covariate (in the SAS commands, specify: class trial alloc;), gives a residual between-
study variance equal to 0.281. This means that only 7 per cent of the between-trial variance in
the treatment e<ect di<erences is explained by the di<erent forms of allocation. The treatment
e<ects (log-odds ratio) do not di<er signi?cantly between the trials with random, alternate
and systematic allocation (p=0:396).

5.2.4. Regression on latitude and year. When both covariates latitude and year are put into
the model, the residual between-study variance becomes only 0.002, corresponding with an
explained variance of 99.3 per cent, only slightly more than by latitude alone. The regression
coe=cients for the intercept, latitude and year are, respectively, 0.494 (standard error =0:529),
−0:034 (standard error =0:004) and −0:001 (standard error =0:006).
We conclude that latitude gives the best explanation of the di<erences in vaccination e<ect

between the trials, since it already explains 98 per cent of the variation. Since the residual
variance is so small, the regression equation in this example could have been obtained by
ordinary weighted linear regression under the assumption of homogeneity. In the original
medical report [4] on this meta-analysis the authors mentioned the strong relationship between
treatment e<ect and latitude as well. They speculated that the biological explanation might
be the presence of non-tuberculous myobacteria in the population, which is associated with
geographical latitude.
Goodness-of-?t of the model obtained above can be checked as in the weighted least squares

approach by individual standardization of the residuals (#̂i−Xi ̂)=
√
(�2+s2i ) and using standard

goodness-of-?t checks.
In interpreting the results of meta-regression analysis, it should be kept in mind that this

is all completely observational. Clinical judgement is essential for correct understanding of
what is going on. Baseline risk may be an important confounder and we will study its e<ect
below.
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5.3. Bivariate regression

The basis of the model is the relation between the pair (!A; i ; !B; i), for example, (true
log-odds in vaccinated group, true log-odds in control group) and the covariate vector Xi.
Since the covariate has inWuence on both components we have a truly multivariate regression
problem in the classical sense that can be modelled as

(
!A; i

!B; i

)
∼N(BXi;V)

Here, the matrix B is a matrix of regression coe=cients: the ?rst row for the A-component
and the second row for the B-component. Taking into account the errors in the estimates we
get the (approximate) model

(
!̂A; i

!̂B; i

)
∼N(BXi;V+ Ci)

Fitting this model to the data can again be done by a self-made program using the EM
algorithm or by programs such as SAS Proc Mixed. The hardest part is the interpretation of
the model. We will discuss the interpretation for the example.
So far we have shown for our leading example the univariate ?xed e<ects model, the uni-

variate random e<ect without covariates, the bivariate random e<ects model without covariates
and eventually the univariate random e<ects model with covariates. We end this section with
a bivariate random e<ects model with covariates.

5.4. Example (continued): bivariate meta-analysis with covariates

To carry out the bivariate regression analyses in SAS Proc Mixed we again need the data
set BCGdata2.sd2 which was organized on treatment arm level. In this example we take
latitude as the covariate. The model can be ?tted using the SAS code given below, where
the variables exp, con and arm have the same meaning as in the bivariate analysis above
without covariates. The variable latcon is for the not-vaccinated (control) groups equal to
the latitude value of the trial and zero for the vaccinated (experimental) groups. The variable
latexp, is de?ned analogously with vaccinated and non-vaccinated reversed.

Proc mixed cl method=ml data=BCGdata2; # call procedure;
class trial arm; # trial and treatment arm are

de?ned as classi?cation variables;
model lno= con exp latcon latexp/noint s cl #model with indicator variables
ddf=1000,1000,1000,1000; ‘exp’ and ‘con’ together with

latitude as explanatory variable
for log-odds in both treatment groups;

random con exp / subject=trial type=fa0(2) s ; # control arm and experimental
trial arm are speci?ed as random
e<ects; covariance matrix is
unstructured, parameterized as
factor analytic;

repeated /group=arm; #each study-arm in each trial has
its own within study-arm error variance;
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parms /parmsdata=covvars4 eqcons=4 to 29; # in the data ?le covvars4 three
starting values are given for the
between study covariance matrix,
together with the 26 within
study-arm variances. The latter
are assumed to be known and kept ?xed;

estimate ‘difference slopes’ latexp 1 latcon -1 #estimate of the di<erence in
/cl df = 1000; slope between the vaccinated

and not-vaccinated groups;
run;

Remark
In the program above we speci?ed type=fa0(2) instead of type=un for V. If one chooses
the latter, the covariance matrix is parameterized as[

"1 "2
"2 "3

]

and unfortunately the program does not converge if the estimated correlation is (very near to)
1, as is the case here. If one chooses the former, the covariance matrix is parameterized as[

"211 "11"12

"11"12 "212 + "222

]

and the program converges even if the estimated correlation is 1, that is, if "22 = 0.

Running the program gives the following output:

The MIXED Procedure
(...)

Covariance Parameter Estimates (MLE)

Cov Parm Subject Group Estimate Alpha Lower Upper
FA(1,1) TRIAL 1.08715174 0.05 0.7582 1.6896
FA(2,1) TRIAL 1.10733154 0.05 0.6681 1.5466
FA(2,2) TRIAL -0.00000000 . . .

(...)
Solution for Fixed Effects

Effect Estimate Std Error DF t Pr > |t| Alpha Lower Upper
CON -4.11736845 0.30605608 1000 -13.45 0.0001 0.05 -4.7180 -3.5168
EXP -4.82570990 0.31287126 1000 -15.42 0.0001 0.05 -5.4397 -4.2118
LATCON 0.07246261 0.02192060 1000 3.31 0.0010 0.05 0.0294 0.1155
LATEXP 0.03913388 0.02239960 1000 1.75 0.0809 0.05 -0.0048 0.0831

ESTIMATE Statement Results

Parameter Estimate Std Error DF t Pr > |t| Alpha Lower Upper

difference slopes -0.03332874 0.00284902 1000 -11.70 0.0001 0.05 -0.0389 -0.0277

In Figure 7 the relationship between latitude and the log-odds of tuberculosis is presented
for the vaccinated treatment arms A as well as for the non-vaccinated treatment arms B. For
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Figure 7. Log-odds versus latitude for control group A and experimental group B.

the not-vaccinated trial arms the regression line is log(odds)= − 0:4117 + 0:072 (latitude
− 33)=−6:509 + 0:072 latitude (standard errors of intercept and slope are 0.794 and 0.022,
respectively). Notice that latitude was centralized at latitude=33 (see Section 4.1). For the
vaccinated trial arms the regression line is log(odds)= − 0:483 (latitude − 33)=−6:117 +
0:039 latitude (standard errors of intercept and slope are 0.809 and 0.022, respectively). We
see that latitude has a strong e<ect, especially on the log-odds of the non-vaccinated study
group.
The between-study covariance matrix V̂ is equal to the nearly singular matrix

[
1:1819 1:2038
1:2038 1:2262

]

The estimated regression line of the treatment di<erence measure on latitude is log-odds
ratioA vs B =0:392 − 0:033 latitude, with standard errors 0.093 and 0.003 for intercept and
slope, respectively. This regression line is almost identical to the one resulting from the
univariate analysis in the previous example. The estimated residual between-study variance is
only 0.0003, meaning that latitude explains almost all heterogeneity in the treatment e<ects.
The regression line of the di<erence measure on both latitude and baseline risk is: log-odds

ratioA vs B =0:512− 0:039 latitude+0:019 log-oddsB. The standard errors can be calculated by
the delta method. We see that the regression coe=cient of the baseline log-odds is quite small
compared to the analysis without any covariates.
The results of this bivariate regression and the results of the simple bivariate model without

covariates of Section 4 are summarized in Table II. By explaining variation in treatment
e<ects by latitude, hardly any residual variation is left. Although this is all observational, we
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Table II. Residual variance of treatment e<ect in di<erent meta-regression models.

Explanatory variables in the model Residual variance of treatment e<ect

No covariates 0.324

Baseline 0.149
Latitude 0.0003
Baseline + latitude 0.0001

come to the tentative conclusion that the e<ect of vaccination depends on latitude rather than
on baseline risk.

6. EXTENSIONS: EXACT LIKELIHOODS, NON-NORMAL MIXTURES,
MULTIPLE ENDPOINTS

The approximate likelihood solutions may be suspect if the sample sizes per study are rel-
atively small. There are di<erent approaches to repair this and to make the likelihoods less
approximate. We will ?rst discuss the bivariate analysis where things are relatively easy and
then the analysis of di<erence measures.

6.1. More precise analysis of bivariate data

Here, the outcome measures per study arm are direct maximum likelihood estimates of the
relevant parameter. The estimated standard error is derived from the second derivative of
the log-likelihood evaluated at the ML-estimate. Our approach is an approximation for ?tting
a generalized linear mixed model (GLMM) by the maximum likelihood method. The latter
is hard to carry out. A popular approximation is by means of the second-order Laplace
approximation or the equivalent PQL method [43], that is, based on an iterative scheme where
the second derivative is evaluated at the posterior mode. This can easily be mimicked in the
SAS procedure Proc Mixed by iteratively replacing the estimated standard error computed
from the empirical Bayes estimate as yielded by the software. For the analysis of log-odds
as in the example, one should realize that the variance of log-odds is derived from the
second derivative of the log-likelihood evaluated at the ML-estimate of p, and is given by
1=(np(1−p)). In the ?rst iteration, p is estimated by the fraction of events in the study arm.
In the next iteration p is replaced by the value derived from the empirical Bayes estimate for
log-odds. This is not very hard to do and easy to implement in a SAS macro that iteratively
uses Proc Mixed (see the example below; the macro version is available from the authors).
This will help for intermediate sample sizes and moderate random e<ect variances. There

are, however, possible situations (small samples, large random e<ect variances) in which the
second-order approximations do not work [44] and one has to be very careful in computing
and maximizing the likelihoods. Fortunately, that is much more of a problem for random
e<ects at the individual level than at the aggregated level we have here.
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6.2. Example (continued)

After running the bivariate random e<ects model discussed in Section 4, the empirical Bayes
estimates can be saved by adding the statement:

make ‘Predicted’ out = Pred;

in the Proc Mixed command and adding a ‘p’ after the slash in the model statement. In this
way the empirical Bayes estimates for log-odds are stored as variable PRED in the new SAS
data ?le Pred.sd2. The within-trial variances in the next iteration of the SAS procedure Proc
Mixed are derived from these empirical Bayes estimates in the way we described above. The
three starting values needed for the between-trial variance matrix are stored as variable est
in the SAS ?le covvars5.sd2.
Thus, after running the bivariate random e<ects model once and saving the empirical Bayes

estimates for log-odds, one can run the two data steps described below to compute the new
estimates for the within-trial variances, use these within-trial variances in the next bivariate
mixed model, save the new empirical Bayes estimates and repeat the whole loop. This iterative
process should be continued until the parameter estimates converge.

# DATA STEP TO COMBINE EMPIRICAL BAYES ESTIMATES AND ORIGINAL DATAFILE FROM SECTION 4 AND
TO CALCULATE THE NEW WITHIN-TRIAL VARIANCES;
data Pred1;
merge BCGdata2 Pred;
pi=exp(_PRED_)/(1+exp(_PRED_));
est=1/(n*pi*(1-pi));
run;

# DATA STEP TO CREATE THE TOTAL DATAFILE THAT IS NEEDED IN THE PARMS-STATEMENT (BETWEEN-
AND WITHIN-TRIAL VARIANCES);
data Pred2;
set covvars5 Pred1;
run;

# PROCEDURE STEP TO RUN THE BIVARIATE RANDOM EFFECTS MODEL WITH NEW WITHIN-TRIAL
VARIANCES, BASED ON THE EMPIRICAL BAYES ESTIMATES.
proc mixed cl method=ml data=BCGdata2 asycov;
class trial arm;
model lno= exp con / p noint s cl covb ddf=1000, 1000;
random exp con/ subject=trial type=un s;
repeated /group=arm subject=arm;
estimate ‘difference’ exp 1 con -1 / cl df=1000;
parms / parmsdata=Pred2 eqcons=4 to 29;
run;

Running the data steps and the mixed model iteratively until convergence is reached gives
the following output:

The MIXED Procedure
(...)

Covariance Parameter Estimates (MLE)

Cov Parm Subject Group Estimate Alpha Lower Upper
UN(1,1) TRIAL 1.43655989 0.05 0.7392 3.9084
UN(2,1) TRIAL 1.76956270 0.05 0.3395 3.1996
UN(2,2) TRIAL 2.43849037 0.05 1.2663 6.4991
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Solution for Fixed Effects

Effect Estimate Std Error DF t Pr > |t| Alpha Lower Upper

EXP -4.84981269 0.34001654 1000 -14.26 0.0001 0.05 -5.5170 -4.1826
CON -4.10942999 0.43736103 1000 -9.40 0.0001 0.05 -4.9677 -3.2512

Covariance Matrix for Fixed Effects

Effect Row COL1 COL2
EXP 1 0.11561125 0.13690215
CON 2 0.13690215 0.19128467

ESTIMATE Statement Results

Parameter Estimate Std Error DF t Pr > |t| Alpha Lower Upper
difference -0.74038270 0.18191102 1000 -4.07 0.0001 0.05 -1.0974 -0.3834

The mean outcome measures (log-odds) for arms A and B are, respectively, −4:850
(standard error =0:340) and 4.109 (standard error =0:437). The between-trial variance of the
log-odds in the vaccinated treatment arm A is V̂AA =1:437 and V̂BB =2:438 in the not-
vaccinated arm B. The estimate of the between-trial covariance is equal to V̂AB =1:770. The
estimated mean vaccination e<ect in terms of the log-odds ratio is −0:740 (standard error =
0:182). In this example, convergence was already reached after one or two iterations. The
?nal estimates are very similar to the original bivariate random e<ects analysis we have
discussed in Section 4, where the mean outcome measures !̂A and !̂B were, respectively,
−4:834 (SE=0:340) and −4:096 (SE=0:434). Of course, when the number of patients in
the trials were smaller, the bene?t and necessity of this method would be more substantial.
Another possibility if the approximate likelihood solutions are suspect is to use the exact

likelihood, based on the binomial distribution of the number of events per treatment arm, and
to estimate the parameters following a Bayesian approach with vague priors in combination
with Markov chain Monte Carlo (MCMC) methods [45]. Arends et al. [10] give examples
of this approach. In their examples the di<erence with the approximate likelihood estimates
turned out to be very small.

6.3. More precise analysis of di1erence measures

The analysis of di<erence measures, that is, one summary measure per trial characterizing
the di<erence in e=cacy between treatments, is a bit more complicated because the baseline
value is considered to be a nuisance parameter. Having this nuisance parameter can be avoided
and a lot of ‘exactness’ in the analysis can be gained by suitable conditioning on ancillary
statistics. In the case of binary outcomes one can condition on the marginals of the 2× 2
tables and end up with the non-central hypergeometric distribution that only depends on the
log-odds ratio. Details are given in Van Houwelingen et al. [1].
However, the hypergeometric distribution is far from easy to handle and it does not seem

very attractive to try to incorporate covariates in such an analysis as well. The bivariate
analysis is much easier to carry out at the price of the assumption that the baseline parameter
follows a normal distribution. However, that assumption can be relaxed as well and brings us
to the next extension: the non-normal mixture.
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6.4. Non-normal mixtures

The assumption of a normal distribution for the random e<ects might not be realistic. Tech-
nically speaking it is not very hard to replace the normal mixture by a fully non-parametric
mixture. As is shown by Laird [46], the non-parametric maximum likelihood estimator of the
mixing distribution is always a discrete mixture and can easily be estimated by means of the
EM algorithm [47]. An alternative is to use the software C.A.MAN of BYohning et al. [48].
However, just ?tting a completely non-parametric mixture is no good way of checking the
plausibility of the normal mixture. The non-parametric estimates are always very discrete even
if the true mixture is normal. A better way is to see whether a mixture of two normals (with
the same variance) ?ts better than a single normal. This model can describe a very broad
class of distributions: unimodal as well as bimodal, symmetric as well as very skewed [19].
Another way is to estimate the skewness of the mixture somehow and mistrust the normality
if the skewness is too big. It should be realized, however, that estimating mixtures is a kind
of ill-posed problem and reliable estimates are hard to obtain [49]. To give an impression we
?tted a non-parametric mixture with the homemade program based on the EM algorithm de-
scribed in Van Houwelingen et al. [1] to the log-odds ratio of our example using approximate
likelihoods. The results were as follows:

atom probability
−1:4577 0:3552
−0:9678 0:1505
−0:3296 0:2980
0:0023 0:1963

corresponding mean: −0:761
corresponding variance: 0:349

The ?rst two moments agree quite well with the normal mixture. It is very hard to tell whether
this four-point mixture gives any evidence against normality of the mixture. The bivariate
normal mixture of Section 4 is even harder to check. Non-parametric mixtures are hard to
?t in two dimensions. An interesting question is whether the estimated regression slopes are
robust against non-normality. Arends et al. [10] modelled the baseline distribution with a
mixture of two normal distributions and found in all their examples a negligible di<erence
with modelling the baseline parameter with one normal distribution, indicating that the method
is robust indeed [10]. However, this was only based on three examples and we do not exclude
the possibility that in some other data examples the regression slopes might be more di<erent.

6.5. Multiple outcomes

In a recent paper Berkey et al. [50] discussed a meta-analysis with multiple outcomes. A
similar model was used in the context of meta-analysis of surrogate markers by Daniels and
Hughes [51] and discussed by Gail et al. [52]. In the simplest case of treatment di<erence
measures for several outcomes, the situation is very similar to the bivariate analysis of Sec-
tions 4 and 5. The model (

!A; i

!B; i

)
∼N(BXi;V)
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Table III.

Trial Publication year !̂PD; i !̂AL; i var(!̂PD; i) var(!̂AL; i) cov ar(!̂PD; i ; !̂AL; i)

1 1983 0.47 −0:32 0.0075 0.0077 0.0030
2 1982 0.20 −0:60 0.0057 0.0008 0.0009
3 1979 0.40 −0:12 0.0021 0.0014 0.0007
4 1987 0.26 −0:31 0.0029 0.0015 0.0009
5 1988 0.56 −0:39 0.0148 0.0304 0.0072

could be used, where !A stands for the (di<erence) measure on outcome A and !B for the
measure on outcome B. It could easily be generalized to more measures C, D, etc. The main
di<erence is that the estimated e<ects are now obtained in the same sample and, therefore,
will be correlated. An estimate of this correlation is needed to perform the analysis. The only
thing that changes in comparison with Section 5 is that the matrix Ci in(

!̂A; i
!̂B; i

)
∼N(BXi;V+ Ci)

is not diagonal anymore but allows within-trial covariation.
This approach can easily be adapted to the situation where there are more than two outcome

variables or more treatment groups.

6.6. Example Berkey et al. [50]

Berkey et al. [50] illustrate several ?xed and random (multivariate) meta-regression mod-
els using a meta-analysis from Antczak-Bouckoms et al. [53]. This meta-analysis concerns
?ve randomized controlled trials, where a surgical procedure is compared with a non-surgical
procedure. Per patient two outcomes are assessed: (pre- and post-treatment change in) prob-
ing depth (PD) and (pre- and post-treatment change in) attachment level (AL). Since the
e=cacy of the surgical procedure may improve over time, a potential factor that may inWu-
ence the trial results is the year of publication [50]. The two treatment e<ect measures are
de?ned as:

!PD =mean PD under surgical treatment −mean PD under non-surgical treatment

!AL =mean AL under surgical treatment −mean AL under non-surgical treatment

The data are given in Table III.
As an example we ?t the model with year of publication as explanatory variable. Berkey

et al. [50] ?tted this model using a self-written program in SAS Proc IML. We show how
it can be done with SAS Proc Mixed. The data set-up is the same as in the earlier discussed
bivariate models with two data rows per trial, one for each outcome measure. Also the Proc
Mixed program is completely analogous. The only di<erence is that in the data set containing
the elements of the Ci’s now the covariance between the two outcomes per trial must be
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speci?ed as well. The SAS code is:

proc mixed cl method=ml data=berkey; #call procedure;
class trial type; # trial and outcome type (PD or
model outcome=pd al pdyear AL) are classi?cation variables;
alyear/noint s cl; #model with indicator variables

‘pd’ and ‘al’ together with
publication year as
explanatory variable;

random pd al / subject=trial type=un s; #speci?cation of among-trial
covariance matrix for
both outcomes;

repeated type /subject=trial #speci?cation of
group=trial type=un; (non-diagonal) within-trial

covariance matrix;
parms /parmsdata=covvars6 #covvars6 contains: 3 starting
eqcons=4 to 18; values for the two between-trial

variances and covariance, 10
within-trial variances (5 per
outcome measure) and 5
covariances. The last 15
parameters are assumed to be
known and must be kept ?xed.

run;

Part of the SAS Proc Mixed output is given below.

The MIXED Procedure
(...)

Covariance Parameter Estimates (MLE)

Cov Parm Subject Group Estimate Alpha Lower Upper

UN(1,1) TRIAL 0.00804054 0.05 0.0018 2.0771
UN(2,1) TRIAL 0.00934132 0.05 -0.0113 0.0300
UN(2,2) TRIAL 0.02501344 0.05 0.0092 0.1857

(...)
Solution for Fixed Effects

Effect Estimate Std Error DF t Pr > |t| Alpha Lower Upper
PD 0.34867848 0.05229098 3 6.67 0.0069 0.05 0.1823 0.5151
AL -0.34379097 0.07912671 3 -4.34 0.0225 0.05 -0.5956 -0.0920
PDYEAR 0.00097466 0.01543690 0 0.06 . 0.05 . .
ALYEAR -0.01082781 0.02432860 0 -0.45 . 0.05 . .

The estimated model is

!PD = 0:34887 + 0:00097∗(year-1984)

!AL =−0:34595− 0:01082∗(year-1984)
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The standard errors of the slopes are 0.0154 and 0.0243 for PD and AL, respectively. The
estimated among-trial covariance matrix is

V̂=
(
0:008 0:009
0:009 0:025

)

The results are identical to those of Berkey et al. [50] with the random-e<ects multiple
outcomes that were estimated with the method named by Berkey as the multivariate maximum
likelihood (MML) method.

6.7. Other outcome measures

Our presentation concentrates on dichotomous outcomes. Much of it carries over to other
e<ect measures that are measured on a di<erent scale. For instance, our methods apply if
the outcome variable is continuous and an estimate of the average outcome and its standard
error is available in both treatment arms. However, in some cases only a relative e<ect is
available, such as the standardized e<ect measure (di<erence in outcome=standard deviation
of the measurements in the control group) which is popular in psychological studies. In that
case only the one-dimensional analysis applies. A special case is survival analysis. The log
hazard ratio in the Cox model cannot be written as the di<erence of two e<ect measures.
However, some measure of baseline risk, for example, one-year survival rate in the control
arm, might be de?ned and the bivariate outcome analysis described above can be used to
explore the relation between treatment e<ect and baseline risk. A complicating factor is that
the two measures are not independent any more. However, if an estimate of the correlation
between the two measures is available, the method can be applied.

6.8. Other software

Although we illustrated all our examples with the SAS procedure Proc Mixed, most if not all
analyses could be carried out by other (general) statistical packages as well. A nice review
of available software for meta-analysis has recently been written by Sutton et al. [54]. Any
package like SPSS, SAS, S-plus and Stata that can perform a weighted linear regression
su=ces to perform a standard ?xed e<ect meta-analysis or a ?xed e<ects meta-regression.
For ?tting random e<ects models with approximate likelihood, a program for the general

linear mixed model (GLMM) is needed, which is available in many statistical packages.
However, not all GLMM programs are appropriate. One essential requirement of the program
is that one can ?x the within-trial variance in the model at arbitrary values per trial.
In S-plus the function lme is used to ?t linear mixed e<ects models and all the analyses

carried out with Proc Mixed of SAS in our examples can also be carried out with lme from
S-plus. The ‘parms’ statement used by SAS to ?x the within-trial variances corresponds with
‘varFixed’ in S-plus [55].
Several Stata macros have been written which implement some of the discussed methods

[56; 57]. The Stata program meta of Sharp and Sterne [56] performs a standard ?xed and
random e<ects meta-analysis without covariates. The Stata command metareg of Sharp [57]
extends this to univariate meta-regression. We are not aware of Stata programs that are capable
of ?tting bivariate meta-regression models, but of course one can do an univariate meta-
regression on the log-odds ratios instead of a bivariate meta-regression on the log-odds of
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the two treatment arms. However, such an analysis does not give any information about the
relationship between the (true) log-odds of the two arms.
Mlwin or MLn appears to be one of the most Wexible methods to ?t mixed-e<ect regression

models [54]. Although we do not have experience with this package, we assume that most if
not all of the discussed models can be ?tted in it.
Finally, in the free available Bayesian analysis software package BUGS, one can also

execute all approximate likelihood analyses that have been presented in this article. If vague
prior distributions are used, the results are very similar. With BUGS it is also possible to ?t
the models using the exact likelihood, based on the binomial distribution of the number of
events in a treatment arm. The reader is referred to Arends et al. [10] for examples and the
required BUGS syntax.

7. BAYESIAN STATISTICS IN META-ANALYSIS

As we mentioned in Section 4, putting uninformative Bayesian priors on all individual nuisance
parameters as done in Thompson et al. [8], Daniels and Hughes [51], Smith et al. [58]
and Sharp and Thompson [30] can lead to inconsistent results as the number of nuisance
parameters grows with the number of studies [36]. This observation does not imply that we
oppose Bayesian methods. First of all, there is a lot of Bayesian Wavour to random e<ects
meta-analysis. The mixing distribution can serve as a prior distribution in the analysis of
the results of a new trial. However, the prior is estimated from the data and not obtained
by educated subjective guesses, that is why random e<ects meta-analysis can be seen as an
example of the empirical Bayes approach. For each study, the posterior distribution given the
observed value can be used to obtain empirical Bayes corrections.
In this paper we describe estimating the mixing distribution by maximum likelihood. The

maximum likelihood method has two drawbacks. First, in complex problems, maximizing the
likelihood might become far from easy and quite time-consuming. Second, the construction
of con?dence intervals with the correct coverage probabilities can become problematic. We
proposed the pro?le likelihood approach in the simple setting of Section 3. For more complex
problems, the pro?le likelihood gets very hard to implement.
When the maximum likelihood approach gets out of control (very long computing times,

non-convergence of the maximization procedure), it can be very pro?table to switch to a
Bayesian approach with vague priors on the parameters of the model in combination with
Markov chain Monte Carlo (MCMC) methods [45] that circumvent integration by replacing it
by simulation. If one wants to use the MCMC technique in this context, the prior should be set
on all parameters of the hierarchical model. Such a model could be described as a Bayesian
hierarchical or Bayesian empirical Bayes model. For examples of this approach, see Arends
et al. [10]. The di<erence with the approach of Thompson et al. [8; 30] is then that they
assume that the true baseline log-odds are a random sample of a fully speci?ed Wat normal
distribution (for example, N(0; 10)), while we assume that the true log-odds are sampled from
a N(�; �) distribution with � and � parameters to be estimated, putting vague priors on them.
So Thompson et al.’s model is a special case of our model. We prefer the parameters of the
baseline risks distribution to be determined by the data. For the examples discussed in this
paper, maximum likelihood was quite convenient in estimating the parameters of the model
and getting a rough impression of their precision. It su=ced for the global analysis described
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here. If the model is used to predict outcomes of new studies, as in the surrogate marker setting
of Daniels and Hughes [51], nominal coverage of the prediction intervals becomes important
and approximate methods can be misleading. MCMC can be very convenient, because the
prediction problem can easily be embedded in the MCMC computations. An alternative is
bootstrapping as described in Gail et al. [52].

8. CONCLUSIONS

We have shown that the general linear mixed model using an approximate likelihood approach
is a very useful and convenient framework to model meta-analysis data. It can be used for the
simple meta-analysis up to complicated meta-analyses involving multivariate treatment e<ect
measures and explanatory variables. Extension to multiple outcome variables and multiple
treatment arms is very straightforward. Suitable software is widely available in statistical
packages.
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