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Background: Due to the non-randomized nature of real-world data, 
prognostic factors need to be balanced, which is often done by pro-
pensity scores (PSs). This study aimed to investigate whether autoen-
coders, which are unsupervised deep learning architectures, might be 
leveraged to compute PS.
Methods: We selected patient-level data of 128,368 first-line treated 
cancer patients from the Flatiron Health EHR-derived de-identified 
database. We trained an autoencoder architecture to learn a lower-
dimensional patient representation, which we used to compute PS. 
To compare the performance of an autoencoder-based PS with estab-
lished methods, we performed a simulation study. We assessed the 
balancing and adjustment performance using standardized mean 
differences, root mean square errors (RMSE), percent bias, and 
confidence interval coverage. To illustrate the application of the auto-
encoder-based PS, we emulated the PRONOUNCE trial by applying 
the trial’s protocol elements within an observational database setting, 
comparing two chemotherapy regimens.

Results: All methods but the manual variable selection approach 
led to well-balanced cohorts with average standardized mean dif-
ferences <0.1. LASSO yielded on average the lowest deviation of 
resulting estimates (RMSE 0.0205) followed by the autoencoder 
approach (RMSE 0.0248). Altering the hyperparameter setup in sen-
sitivity analysis, the autoencoder approach led to similar results as 
LASSO (RMSE 0.0203 and 0.0205, respectively). In the case study, 
all methods provided a similar conclusion with point estimates clus-
tered around the null (e.g., HRautoencoder 1.01 [95% confidence inter-
val = 0.80, 1.27] vs. HRPRONOUNCE 1.07 [0.83, 1.36]).
Conclusions: Autoencoder-based PS computation was a feasible 
approach to control for confounding but did not perform better than 
some established approaches like LASSO.

Keywords: Autoencoder; Causal inference; Comparative effective-
ness research; Deep learning; Electronic health records; Machine 
learning; Propensity scores
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Randomized controlled trials (RCTs) are the gold standard 
when evaluating the effects of interventions on health-

related outcomes. However, the digitization of healthcare 
infrastructure, such as electronic health records (EHR), and a 
boost in computational power in the past years have led to an 
increase in evidence generated by routinely collected health-
care data, often termed real-world data.1–3

Due to the heterogeneous and non-randomized nature 
of these data, such analyses inherit the chance to lead to mis-
leading conclusions when biases, such as confounding bias, 
are not addressed appropriately.4 Therefore, propensity score 
(PS) techniques are popular analytical approaches to balance 
patient characteristics in observational research.5 In general, 
PSs are defined as an individual’s (i) conditional probability 
to be assigned to a particular treatment (Zi) given observed 
baseline covariates (Xi) with Pr(Zi = 1|Xi).

6 By condition-
ing on the PS, researchers try to create positivity; that is, 
if a given combination of covariate values is observed in 
one cohort, it should also appear in the other cohort under 
comparison.7 Under the assumption of no unmeasured con-
founding and a correctly specified PS model, unbiased treat-
ment effects may be estimated, for example, via matching or 
weighting on the PS.

There is ongoing debate about the ideal strategy to 
correctly specify the PS8,9 and in the majority of cases, 
logistic regression models are fitted using a set of a priori 
investigator-defined covariates.10 This approach is straight-
forward but may be error-prone when interaction terms or 
higher-order relationships are not appropriately modeled.11 
Moreover, as healthcare databases are getting increasingly 
complemented by more dimensions like genomics, select-
ing the correct set of covariates on a manual basis becomes 
infeasible and automatable data-adaptive methods are 
warranted.

With the ability to handle high-dimensional datasets 
in a nonlinear and automatable fashion, deep learning mod-
els are highly attractive approaches to solve these prob-
lems.12 We aimed to investigate if autoencoders, which are 
unsupervised deep learning encoder-decoder architectures 
that learn a latent non-linear lower-dimensional covari-
ate representation, might be leveraged as a data-adaptive 
alternative to compute PS for comparative effectiveness 
research.

The objective of this study is two-fold. First, we com-
pare the performance of covariate balancing and confounding 
bias reduction with the autoencoder-based PS as compared 
with established adjustment strategies in a simulation frame-
work among cancer patients with a first-line (1L) systemic 
anticancer treatment. In the second part of this study, we will 
emulate the 2015 published PRONOUNCE trial13 by apply-
ing the trial’s major protocol elements to the observational 
database setting of this study to illustrate the application of 
the autoencoder-based PS to a real comparative effectiveness 
use case.

METHODS

Data Sources and Study Population
For this retrospective real-world data study, we used 

the nationwide Flatiron Health EHR-derived de-identified 
database which includes data from over 280 cancer clinics 
including more than 2.2 million US cancer patients avail-
able for analysis. The de-identified patient-level data in the 
EHRs include structured data (e.g., laboratory values and pre-
scribed drugs) in addition to unstructured data collected via 
technology-enabled chart abstraction from physician’s notes 
and other unstructured documents (e.g., biomarker reports). In 
this study, we selected patients out of tumor-specific databases 
and pooled them into a single cohort. Patients were eligible to 
be included if they were diagnosed with any primary tumor 
and received a 1L systemic anticancer treatment (CONSORT 
diagram, Figure 1).

Data Curation and Covariate Ascertainment
We considered covariates for modeling if they were 

applicable across all tumor types and for at least 20% of all 
patients (eTable 1; http://links.lww.com/EDE/B777). We 
imputed missing covariates or those with implausible values 
(as defined as being outside of 1.5 × the interquartile range 
from the quartiles Q1 and Q3, respectively14) using median 
imputation for continuous covariates or assigning a miss-
ing indicator category to one-hot encoded categorical vari-
ables.15,16 In addition, we derived empirical covariates (EC) 
of lab and vital sign tests. As the Flatiron Health EHR-derived 
de-identified database does not contain records of claims, pro-
cedure codes, and outpatient diagnosis codes, these EC were 
derived from the frequency of clinical laboratory tests and 
vital sign tests (which corresponds to steps 1–3 of the high-
dimensional PS algorithm17), which resulted in 123 additional 
covariates (eTable 1; http://links.lww.com/EDE/B777). All 
covariates were measured at or before the start of 1L therapy 
(=index date) with a maximum lookback window period of 
90 days relative to the index date (eFigure 1; http://links.lww.
com/EDE/B777).18,19

Non-linear Latent Variables and Propensity 
Scores Computed by Autoencoder

The following section briefly illustrates the autoencoder-
based PS computation (terminology used in this paragraph is 
defined in eAppendix1; http://links.lww.com/EDE/B777 and 
in Bi et al20).

Autoencoders are unsupervised neural network architec-
tures that generally consist of an input layer, a lower-dimensional 
hidden “bottleneck” layer, and an output layer with the same 
dimensions as the input layer. Conceptually, the autoencoder-
based PS computation can be described as follows (Figure 2). 
All available information about a patient may be defined as a 
high-dimensional covariate vector serving as the input layer. 
This input layer is sequentially compressed to arrive at a latent 
nonlinear lower-dimensional covariate representation in the 

http://links.lww.com/EDE/B777
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hidden bottleneck layer (encoding). Given the lower-dimen-
sional information of the bottleneck layer, the actual input 
information can be reconstructed (decoding); the decoded 
information is leveraged in autoencoders to adjust the network 
parameters in each iteration by computing the loss between 
the actual data and the predicted reconstruction. Due to the 
compression and the optimization of parameters of the neural 
network in each encoding–decoding iteration step, the autoen-
coder learns essential features describing the highest variance 
of a dataset. This way the bottleneck layer captures the true 
data manifold in a much lower-dimensional representation 
(embedding) that can eventually be used to specify the PS.

After the above described general setup, we developed 
an autoencoder architecture (details on architecture, hyperpa-
rameters, and code can be found in eAppendix1; http://links.
lww.com/EDE/B777). To compute the PS based on the trained 
embedding, we used a logistic regression as the final output layer.

Propensity Score Estimation Methods for 
Comparison

To investigate the performance of an autoencoder-based 
PS, we chose established adjustment (multivariable regres-
sion) and PS estimation methods (manual variable selec-
tion, principal component analysis [PCA], and LASSO) for 

FIGURE 1.  Consort diagram illustrating selection of eligible patients for simulation.

FIGURE 2.  Conceptual architecture of patient representation learning and autoencoder-based propensity score computation. 
Figure is available in color online.
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comparison employing a simulation framework (Table  1). 
We additionally extended all machine learning models by the 
set of EC that were derived as described above (EC extended 
models 7–9). For more details see eAppendix1; http://links.
lww.com/EDE/B777.

Simulation Setup
The overall objective was to simulate different realistic 

scenarios of confounding bias between a fictional head-to-
head drug comparison and to investigate the resulting balanc-
ing and adjustment after 1:1 PS matching with PS computed 
using the aforementioned PS estimation methods (Table  1). 
We defined the outcome of interest for this simulation study 
as overall survival, which we computed as the time from index 
date to death due to any reason or censoring.

The general simulation algorithm is illustrated in 
Figure 3A. In brief, all eligible patients were equally random-
ized to either a drug A or a drug B cohort to remove any 
prognostic association of the covariates to the assignment 
probability to one of the cohorts. This resulted in a hazard 
ratio (HR) for overall survival of 1.00 (95% confidence inter-
val [CI] = 0.99, 1.01), which served as the true estimate in this 
simulation (eFigure 2; http://links.lww.com/EDE/B777). In a 
next step, we grouped patients into prognostic quartiles (Q1–
Q4) according to their baseline hazards towards the outcome 
(overall survival) with patients in Q1 having a good progno-
sis (lowest hazard) to patients in Q4 having a poor prognosis 
(eFigure 3 and eTable 2; http://links.lww.com/EDE/B777). 
The prognostic quartiles are based on a published prognos-
tic score for overall survival (eFigures 4 and 5; http://links.
lww.com/EDE/B777) that was developed within a large pan-
cancer cohort and is derived from a formula with strongly 

prognostic demographic, clinical, routine hematology, and 
blood chemistry parameters (eTable 3; http://links.lww.com/
EDE/B777) that were modeled within a Cox proportional 
hazard framework to derive a multivariable prognostic risk 
model for overall survival.21 The resulting prognostic score 
was validated in two independent phase I and III clinical stud-
ies. To simulate baseline imbalances, we exploited the corre-
lation between prognostic score-based balance measures for 
PS models with bias in the treatment effect estimate using 
conditional resampling as described in the following.22 Out of 
the drug A cohort, we sampled 10,000 patients completely at 
random and independent of their assignment to the prognos-
tic quartiles to arrive at a homogenous sample with a constant 
prognosis in each replication step. In contrast, we sampled 
10,000 patients randomized to the drug B cohort with a con-
ditional sampling probability based on their assignment to a 
prognostic quartile (e.g., scenario 1: patients in Q1 were sam-
pled with a probability of 40%, in Q2 with 30%, in Q3 with 
20%, and in Q4 with 10%). Because quartile membership is 
associated with overall survival, the conditional sampling of 
the drug B cohort (as compared to the random sampling of 
the drug A cohort) naturally induces a spurious association, 
which is solely driven by the variables defining the quartiles. 
We applied this sampling scheme in total 27 different sam-
pling probabilities with 100 replications each to simulate var-
ious scenarios of confounding bias yielding biased estimates 
with different magnitudes and directions away from the true 
HR of 1.00 (Figure 3B).

We finally assessed the comparative performance of 
each PS computation method as to how much each method 
was able to adjust for the above described induced spuri-
ous association. For this purpose, we matched the resulting 

TABLE 1.  Models and Adjustment Strategies Compared in Simulation Framework

Model Adjustment Strategya

Data-adaptive  
Covariate Selection/ 

Transformation
Covariates Adjusted for or  

Potential Covariates to Choose from

1 Unadjusted — —

2 Multivariable regression 

(direct outcome model)

No Age, cancer entity, gender, stage, histology, healthcare provider, race/ethnicity, time from initial 

cancer diagnosis to 1L initiation, calendar year of initial cancer diagnosis

3 Manual variable selection No Age, cancer entity, gender, stage, histology, healthcare provider, race/ethnicity, time from initial 

cancer diagnosis to 1L initiation, calendar year of initial cancer diagnosis

4 LASSO Selection All generally available covariatesb. Algorithm picks covariates according to shrinkage/regularization

5 PCA Transformation All generally available covariatesb. Algorithm computes linear transformation of all covariates in a data-

set to principal components (PCs) of which the top n PCs, explaining 80% variance, were chosen

6 Autoencoder Transformation All generally available covariatesb. Algorithm computes lower-dimensional representation of j 

dimensions based on non-linear data operations into latent-space variables

7 LASSO EC Transformation Model 4 + 123 empirical covariatesc

8 PCA EC Selection Model 5 + 123 empirical covariatesc

9 Autoencoder EC Transformation Model 6 + 123 empirical covariatesc

aIn model 2 the estimate is directly computed from a multivariable regression while models 3-9 are based on propensity score matching.
bTotal of 318 demographic, clinical, cancer-/disease-specific covariates (eTable 1; http://links.lww.com/EDE/B777).
cTotal of 123 empirical frequency covariates derived, corresponds to steps 1–3 of the high-dimensional propensity score algorithm (eTable 1; http://links.lww.com/EDE/B777).
1L indicates first-line systemic cancer treatment; LASSO, least absolute shrinkage and selection operator; PC(A), principal component (analysis).

http://links.lww.com/EDE/B777@line 2@@line 2@@line 2@@line 2@
http://links.lww.com/EDE/B777@line 2@@line 2@@line 2@@line 2@
http://links.lww.com/EDE/B777
http://links.lww.com/EDE/B777@line 2@@line 2@
http://links.lww.com/EDE/B777@line 2@@line 2@
http://links.lww.com/EDE/B777@line 2@@line 2@
http://links.lww.com/EDE/B777@line 2@@line 2@
http://links.lww.com/EDE/B777@line 2@@line 2@
http://links.lww.com/EDE/B777
http://links.lww.com/EDE/B777


Copyright © 2021 Wolters Kluwer Health, Inc. Unauthorized reproduction of this article is prohibited.

	 Epidemiology  •  Volume 32, Number 3, May 2021Weberpals et al.

382  |  www.epidem.com	 © 2021 Wolters Kluwer Health, Inc. All rights reserved.

cohorts without replacement in a 1:1 ratio with a caliper width 
of 0.2 SDs of the predicted PS logit,23 and HRs were esti-
mated using Cox proportional hazards regression models with 
a robust variance estimator.24 Simulations of treatment effects 
other than a null treatment effect were not considered to avoid 
complications with the collapsibility25 and proportional haz-
ards assumption26 of HRs.

We assessed the overall balance in the distribution 
of important baseline covariates after PS matching using 
standardized mean differences (SMD) with a cutoff of <0.1 

indicating sufficient balance.27 To assess the average devia-
tion of the resulting HRs and the true HR of 1.00, we com-
puted the root mean square error (RMSE) as performance 
metrics. To measure the uncertainty of the point estimates, 
we computed the coverage probability as the proportion of 
times the estimated 95% CI included the true HR of 1.00.28,29 
Additionally, we estimated the absolute bias (in percent) as  

HR HR

HR
pooled True

True

−
×100  for each simulation scenario.30

FIGURE 3.  A, Sampling algorithm for simulation and (B) overview of magnitude of induced confounding bias by simulation sce-
nario. Q indicates quartile; ROPRO, real-world prognostic score. Figure is available in color online.
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Case Study
To illustrate the application of the autoencoder-based 

PS in comparative effectiveness research, we emulated the 
PRONOUNCE trial by applying the major protocol design 
elements of this trial within the observational Flatiron Health 
EHR-derived de-identified database.

In brief, the PRONOUNCE trial was a randomized, 
open-label, phase III trial aimed at evaluating the comparative 
efficacy of carboplatin/pemetrexed followed by pemetrexed 
maintenance versus bevacizumab/carboplatin/paclitaxel fol-
lowed by bevacizumab maintenance as 1L treatment among 
advanced nonsquamous non-small-cell lung cancer patients.13 
In terms of overall survival, the PRONOUNCE trial did not 
find a difference in treatment efficacy for either of the combi-
nations, which served as our expected outcome for the emula-
tion of this trial.

For the implementation of the major in-/exclusion crite-
ria and study design elements, we followed the target trial emu-
lation framework by Hernán and Robins31 and summarized the 
comparison to the original in eTable 4 and eFigure 6; http://
links.lww.com/EDE/B777. Instead of a random assignment to 
either treatment strategy in a 1:1 ratio in the original trial, we 
applied PS matching (applying the different PS computation 
approaches) in a 1:1 ratio (nearest neighbor without replace-
ment as main analysis)32 and standardized mortality ratio 
(SMR) weighting (sensitivity analysis).33 We derived estimates 
for overall survival using Cox proportional hazards regression 
with the initiation of maintenance therapy as start of follow-up. 
The causal contrast of interest was analyzed as the counter-
factual comparison of initiators of the two different treatment 
strategies as an observational equivalent of the RCT’s intent-
to-treat analysis. Further details are outlined in the supplemen-
tary methods (eAppendix1; http://links.lww.com/EDE/B777).

RESULTS
The characteristics of the eligible simulation popula-

tion are displayed in eTable 5; http://links.lww.com/EDE/
B777. Results of the hyperparameter selection and evaluation 
are illustrated in the supplementary material (eFigures 7–11; 
http://links.lww.com/EDE/B777) and computation times for 
the autoencoder models and simulations are summarized in 
eFigures 12 and 13, and eTable 6; http://links.lww.com/EDE/
B777, respectively.

Simulation—Balancing Properties
Figure 4 summarizes the average balancing performance 

of important baseline characteristics by simulation scenario. 
In general, most PS estimation methods led to sufficient bal-
ancing of important patient characteristics at baseline (SMD 
<0.1). In some scenarios, imbalances for some covariates were 
observed for PS computed using manual variable selection. 
Investigating SMDs by scenario indicated that those imbal-
ances resulted from some of the more extreme confounded 
scenarios (eFigure 14; http://links.lww.com/EDE/B777).

Simulation—Root Mean Square Error, Percent 
Bias, and Coverage

The overall results across all simulated scenarios and 
iterations are illustrated in Table  2. Estimates without any 
adjustment resulted on average in high RMSEs (0.1205) 
and bias (10.4% bias) and low coverage (16.41%). When 
covariates were manually chosen (models 2 and 3), the PS 
method led on average to a lower RMSE (0.0670 vs. 0.0790), 
bias (5.73% vs. 6.75%), and a higher coverage (32.81% vs. 
27.67%) as compared with choosing the same covariates for 
direct outcome regression, respectively. Point estimates were 
observed to scatter broadly around the null for both methods 
(eFigure 15; http://links.lww.com/EDE/B777). Comparisons 
between model standard errors and empirical standard errors 
indicated a less reliable variance estimation for models 1–3 
(eTable 7; http://links.lww.com/EDE/B777). The PCA PS esti-
mation method led to a noticeable improvement in adjustment 
performance as compared with selecting covariates manually 
with a RMSE of 0.0293 and 0.0329 for PCA and PCA EC, 
respectively. Employing an autoencoder-based estimation of 
the PS led to further improvements in RMSEs of 0.0248 and 
0.0265, bias of 2.00% and 2.15%, and coverage of 87.70% 
and 85.19% for autoencoder and autoencoder EC, respec-
tively. The best adjustment performance was observed with 
both LASSO approaches with around 1.7% bias and nearly 
94% coverage.

We observed the same pattern when we compared the 
point estimates by simulated scenarios (Figure 5). As expected, 
unadjusted estimates ranged from approximately 0.8 to over 
1.2. Both LASSO approaches followed by the autoencoder 
approaches demonstrated the best adjustment performance in 
most of the cases. In particular, we observed that the LASSO 
EC model had the best CI coverage to include the true HR in 
at least 95% of the times in 14 out of the 27 simulated sce-
narios (Figure 5 and eTables 8–10; http://links.lww.com/EDE/
B777). When the percent bias was compared by simulated 
scenario, the results were consistent with <2% (LASSO and 
LASSO EC) and 3% (autoencoder and autoencoder EC) bias 
in almost all of the scenarios (Figure 6 and eTable 9; http://
links.lww.com/EDE/B777).

Sensitivity Analyses
When we changed the autoencoder architecture from 

three hidden layers to one in sensitivity analysis I, the per-
formance of the autoencoder-based models slightly improved 
(eTable 11; http://links.lww.com/EDE/B777). The overall per-
formance remained nearly the same when the main architec-
ture was altered to having a 128-dimensional bottleneck layer 
size in sensitivity analysis II (eTable 12; http://links.lww.com/
EDE/B777). Combining the architecture alterations from sen-
sitivity analyses I and II, results of the autoencoder approach 
were comparable to the ones of the LASSO approaches with 
an average RMSE of 0.0203 (eTable 13; http://links.lww.com/
EDE/B777). When taking all possible PCs, instead of those 

http://links.lww.com/EDE/B777@line 2@@line 2@@line 2@@line 2@
http://links.lww.com/EDE/B777@line 2@@line 2@@line 2@@line 2@
http://links.lww.com/EDE/B777
http://links.lww.com/EDE/B777@line 2@@line 2@@line 2@@line 2@
http://links.lww.com/EDE/B777@line 2@@line 2@@line 2@@line 2@
http://links.lww.com/EDE/B777
http://links.lww.com/EDE/B777@line 2@@line 2@@line 2@@line 2@
http://links.lww.com/EDE/B777@line 2@@line 2@@line 2@@line 2@
http://links.lww.com/EDE/B777
http://links.lww.com/EDE/B777
http://links.lww.com/EDE/B777
http://links.lww.com/EDE/B777@line 2@@line 2@@line 2@@line 2@
http://links.lww.com/EDE/B777@line 2@@line 2@@line 2@@line 2@
http://links.lww.com/EDE/B777@line 2@@line 2@@line 2@@line 2@
http://links.lww.com/EDE/B777@line 2@@line 2@@line 2@@line 2@
http://links.lww.com/EDE/B777
http://links.lww.com/EDE/B777@line 2@@line 2@@line 2@@line 2@
http://links.lww.com/EDE/B777@line 2@@line 2@@line 2@@line 2@
http://links.lww.com/EDE/B777@line 2@@line 2@@line 2@@line 2@
http://links.lww.com/EDE/B777@line 2@@line 2@@line 2@@line 2@


Copyright © 2021 Wolters Kluwer Health, Inc. Unauthorized reproduction of this article is prohibited.

	 Epidemiology  •  Volume 32, Number 3, May 2021Weberpals et al.

384  |  www.epidem.com	 © 2021 Wolters Kluwer Health, Inc. All rights reserved.

describing 80% of the cumulative variance explained, the per-
formance according to RMSE and bias decreased while the 
coverage improved (eTable 14; http://links.lww.com/EDE/
B777). Increasing the number of replications to 500 did not 
noticeably change the results of the main analysis, indicating 
that 100 replications per scenario were sufficient (eTable 15; 
http://links.lww.com/EDE/B777).

Case Study
There were 781 patients eligible for the case study 

(eFigure 16; http://links.lww.com/EDE/B777). The results 
are summarized in Figure  7. All analyses suggested a null 

association with the unadjusted point estimate being slightly 
below the null. All adjusted models ranged between point 
estimates of 1.00–1.09 with the autoencoder analysis being 
slightly closer to the null (HRautoencoder 1.01 [95% CI = 0.80, 
1.27] vs. HRPRONOUNCE 1.07 [0.83, 1.36]) as compared with 
the autoencoder EC model (HR 1.09 [95% CI = 0.87, 1.37]). 
SMR weighting led to very similar estimates with the excep-
tion of the LASSO approaches having much wider CIs (eFig-
ure 17; http://links.lww.com/EDE/B777).

DISCUSSION
In this RWD study, we developed a novel automated 

autoencoder-based approach and compared it with estab-
lished approaches. Using a comprehensive simulation frame-
work, we observed that in terms of confounding control, the 
autoencoder-based approach led to reasonable results, but did 
not perform substantially better than some of the established 
approaches such as LASSO. In an empirical case study emu-
lating the PRONOUNCE trial using observational data, the 
autoencoder-based results were consistent with the conclusion 
of the original trial.

PSs are frequently used analytical tools (eFigure 18; 
http://links.lww.com/EDE/B777) since they enable research-
ers to collapse many dimensions of confounding covariates 
into a single dimension while still maintaining sufficient pre-
cision. The advantage of deep learning-based PS is the abil-
ity to easily handle large amounts of data involving complex 

FIGURE 4.  Baseline covariate balance by propensity score computation method and simulation scenario. Average SMDs are 
displayed for each of the 27 scenarios per baseline characteristic. ALP indicates alkaline phosphatase; ALT, alanine aminotransfer-
ase; AST, aspartate aminotransferase; BMI, body mass index; ECOG, Eastern Cooperative Oncology Group (ECOG) Performance 
Status; LASSO, least absolute shrinkage and selection operator; LDH, lactate dehydrogenase; NLR, neutrophil-to-lymphocyte 
ratio; PC(A), principal component (analysis). Figure is available in color online.

TABLE 2.  Summary of Adjustment Performance Across All 
Scenarios

Method RMSE Bias (%) CI Coverage (%)

Unadjusted 0.1205 10.4 16.41

Multivariable regression 0.0790 6.75 27.67

Manual variable selection 0.0670 5.73 32.81

LASSO 0.0205 1.65 93.74

PCA 0.0293 2.39 79.59

Autoencoder 0.0248 2.00 87.70

LASSO EC 0.0210 1.69 93.52

PCA EC 0.0329 2.71 74.00

Autoencoder EC 0.0265 2.15 85.19

LASSO indicates least absolute shrinkage and selection operator; PC(A), principal 
component (analysis).
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associations between covariates. An earlier study from 2008 
investigated different techniques in PS estimation with various 
non-linear and non-additive associations on 10 binary/contin-
uous covariates and concluded that even a rather simple neu-
ral network outperformed recursive partitioning algorithms in 
terms of providing the least numerically biased estimates.34 

This may suggest that the appropriate modeling of potentially 
non-linear covariate structures may be of relevant importance 
for confounding control. Especially analyses in EHR data may 
benefit from autoencoder-based PS as these usually capture 
routine care laboratory measurements and vital sign param-
eters which have been shown to be of paramount prognostic 

FIGURE 5.  Average HRs for each of the 27 simulated scenarios and paneled PS estimation method. *Indicates that the CI cover-
age for the respective scenario included the true HR at least 95% of the times. The red dashed line indicates the true HR that is 
intended to be recovered by the propensity score adjustment. LASSO indicates least absolute shrinkage and selection operator. 
Figure is available in color online.

FIGURE 6.  Comparison of average absolute % bias by simulation scenario for each PS estimation method. LASSO indicates least 
absolute shrinkage and selection operator. Figure is available in color online.
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value.21,35 This may explain why in this study the autoencoder-
based PS performed better than the PCA approaches since, in 
case of no nonlinearity, both methods should in principle lead 
to similar results.36 However, given that continuous covari-
ates are still usually rather rare in healthcare databases, we 
may have underestimated the abilities of the autoencoder-
based approach in this study and further studies are warranted 
once multimodal data elements, such as medical images and 
sequencing data, complement contemporary databases.37

Application and Use Cases
The autoencoder-based PS can be generally used in 

any type of comparative effectiveness study where sufficient 
confounder balancing between two cohorts is required. In 
the here presented comparative effectiveness case study, it 
was possible to derive the same qualitative conclusion as in 
the PRONOUNCE trial by applying autoencoder-based PS. 
Although the primary objective in the case study was to test 
the use of autoencoder-based PS in a real comparative effec-
tiveness research setup, the equal results of all methods may 
be explained with the fact that confounding bias was not as 
strong in this particular research question as compared to 
some of the more extreme scenarios in the simulation. This 
seems plausible given that due to the variety of possible treat-
ments and sometimes lacking evidence for the most effective 
combination, the selective channeling of patients with higher 
risk (as often observed with prescription drugs like COX-2 
inhibitors vs. nonselective nonsteroidal anti-inflammatory 
drugs) may not be apparent. This may underline an attractive 
feature of the autoencoder-based PS, which could be used as 
an automated and data-adaptive sensitivity analysis in com-
parative effectiveness studies with unknown extent of con-
founding bias.

Especially in the era of precision medicine, in which 
treatment decisions for specific subpopulations of patients 
are based on distinct molecular characteristics, comparative 

effectiveness research might play an increasingly important 
role in addressing challenges, for example, in the area of early 
clinical development of new therapeutics. Here, designs such 
as external control arms are interesting approaches that could 
benefit by advanced analytics like deep learning-based PS. 
A recent proof-of-concept study assessed how well external 
controls could have approximated the actual standard-of-care 
controls in nine lung cancer trials.38 The authors reported that 
the comparison of estimates between RCTs and external con-
trols resulted in a Pearson correlation coefficient of 0.86. This 
is an encouraging example suggesting that external control 
arms come with a sufficient validity and can play an impor-
tant role in facilitating real-world data to support early clinical 
development and regulatory submissions.3,39

Strengths and Limitations
Due to the nature of routinely collected health records, 

there is missing data. In this study, we employed median 
imputation and assigning a missing-indicator category to 
one-hot encoded categorical variables because this or simi-
lar approaches were suggested to have good performance in 
studies with large datasets where multiple imputation would 
be computationally very expensive and generally not opera-
tionalizable.16,40 This approach is also supported by various 
recent prediction models trained on EHR data which reported 
outstanding performance.15,41

In addition, data-adaptive approaches always inherit 
the risk of including covariates that may be collider covariates 
(M-bias), instrumental covariates (Z-bias), or causal interme-
diates. Colliders are covariates that open a causal path from 
exposure to outcome.42 Including such covariates in the PS com-
putation may induce a spurious association where in fact there 
is none. Besides directed acyclic graphs, there is no formal way 
to test for colliders, making it difficult to exclude such variables 
before PS computation. However, Schneeweiss43 found that 
under realistic scenarios a collider-induced bias was negligible 

FIGURE 7.  Forest plot illustrating HRs and 95% confidence intervals (CIs) for overall survival by PS estimation method. HR indi-
cates hazard ratio; LASSO,  least absolute shrinkage and selection operator; PCA, principal component analysis.
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and outweighed by the adjustment effect for other covariates. 
Instrumental variables (IV) are covariates that are only associated 
with the exposure but not with the outcome. IVs are frequently 
used to control for unmeasured confounding44 but also introduce 
bias (Z-bias) when conditioning on them. Especially in oncology, 
calendar period effects are strong predictors for therapy decisions 
once new breakthrough treatments are approved.45 Although 
there is a theoretical chance to have unintentionally included IVs, 
Myers et al46 showed that only in the presence of strong unmea-
sured confounding does Z-bias have effects worth mentioning. 
While expert knowledge plays an important role in avoiding 
covariates that could mediate the association between exposure 
and outcome,47 the risk of adjusting for causal intermediates can 
also be mitigated with appropriate study designs such as an active 
comparator, new user design as applied in this study.4,43

A unique strength of this study is the novelty approach 
to learn patient representations for PS computation in a data-
adaptive manner, which we found to have a reasonable per-
formance and which may serve as a promising tool for the 
future once more data elements complement contemporary 
databases. Applying comprehensive sensitivity analyses, we 
found the methodology to be robust as all setups and scenar-
ios resulted in a similar conclusion. The observation that the 
autoencoder architecture with less hidden layers and a larger 
bottleneck layer led to results closer to LASSO gave some con-
cern that this may have been the consequence of overfitting of 
the main model. Nevertheless, differences were marginal and 
did not change the main conclusion while the hyperparameter 
setup of the main model was found to be a reasonable trade-off 
between compactness of the resulting embedding and suffi-
cient reconstruction performance and generalizability.

It is further important to credit that the autoencoder 
approach is a pure unsupervised method, which means that 
the confounding control in this study has been solely achieved 
without optimizing the network towards the probability of 
patients receiving the treatment, which needs to be acknowl-
edged when comparing to supervised approaches like LASSO. 
Hence, potential deep-learning architectural extensions would 
be of utmost interest, for example, by jointly modeling targets 
and inputs using end-to-end learning architectures.

A limitation of this simulation is that due to the non-col-
lapsibility of HRs, only a null treatment effect could be simu-
lated which may in future research be addressed by estimating 
risk-differences and more sophisticated simulation techniques 
such as plasmode simulations.48,49 In addition, variance esti-
mation seemed to be less reliable for models 1–3 (eTable 7; 
http://links.lww.com/EDE/B777), limiting the ability to make 
final conclusions about their true CI coverage.

For this study, it was possible to use a large underlying 
population to train and empirically examine the comparative 
performance of the proposed autoencoder approach. This real-
world database provided comprehensive oncology-specific 
data, which underwent a rigorous data quality assurance pro-
cess before release.

Finally, it is important to acknowledge that this study pri-
marily focused on the analytical aspects to reduce confound-
ing. Carefully chosen analysis always needs to go along with 
a causal study design to avoid serious biases such as reverse 
causality and immortal time bias, which are known as sources 
for much larger bias than conventional confounding.43,50

CONCLUSIONS
In summary, we developed an autoencoder-based 

PS computation that our assessment found to be a feasible 
approach to reduce confounding bias, although not with a 
substantially stronger performance than some of the estab-
lished approaches such as LASSO. As a promising tool for 
the future, it may be considered alongside with established 
approaches in non-randomized comparisons in comparative 
effectiveness research.
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