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Deep Learning-based Propensity Scores for Confounding
Control in Comparative Effectiveness Research

A Large-scale, Real-world Data Study

Janick Weberpals,® Tim Becker,® Jessica Davies,® Fabian Schmich,* Dominik Riittinger,*
Fabian J. Theis,>' and Anna Bauer-Mehren®

Background: Due to the non-randomized nature of real-world data,
prognostic factors need to be balanced, which is often done by pro-
pensity scores (PSs). This study aimed to investigate whether autoen-
coders, which are unsupervised deep learning architectures, might be
leveraged to compute PS.

Methods: We selected patient-level data of 128,368 first-line treated
cancer patients from the Flatiron Health EHR-derived de-identified
database. We trained an autoencoder architecture to learn a lower-
dimensional patient representation, which we used to compute PS.
To compare the performance of an autoencoder-based PS with estab-
lished methods, we performed a simulation study. We assessed the
balancing and adjustment performance using standardized mean
differences, root mean square errors (RMSE), percent bias, and
confidence interval coverage. To illustrate the application of the auto-
encoder-based PS, we emulated the PRONOUNCE trial by applying
the trial’s protocol elements within an observational database setting,
comparing two chemotherapy regimens.
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Results: All methods but the manual variable selection approach
led to well-balanced cohorts with average standardized mean dif-
ferences <0.1. LASSO yielded on average the lowest deviation of
resulting estimates (RMSE 0.0205) followed by the autoencoder
approach (RMSE 0.0248). Altering the hyperparameter setup in sen-
sitivity analysis, the autoencoder approach led to similar results as
LASSO (RMSE 0.0203 and 0.0205, respectively). In the case study,
all methods provided a similar conclusion with point estimates clus-
tered around the null (e.g., HR . 1.01 [95% confidence inter-
val = 0.80, 1.27] vs. HR , onouncs 1-07 [0.83, 1.36]).

Conclusions: Autoencoder-based PS computation was a feasible
approach to control for confounding but did not perform better than
some established approaches like LASSO.

Keywords: Autoencoder; Causal inference; Comparative effective-
ness research; Deep learning; Electronic health records; Machine
learning; Propensity scores
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andomized controlled trials (RCTs) are the gold standard

when evaluating the effects of interventions on health-
related outcomes. However, the digitization of healthcare
infrastructure, such as electronic health records (EHR), and a
boost in computational power in the past years have led to an
increase in evidence generated by routinely collected health-
care data, often termed real-world data.'

Due to the heterogeneous and non-randomized nature
of these data, such analyses inherit the chance to lead to mis-
leading conclusions when biases, such as confounding bias,
are not addressed appropriately.* Therefore, propensity score
(PS) techniques are popular analytical approaches to balance
patient characteristics in observational research.’ In general,
PSs are defined as an individual’s (i) conditional probability
to be assigned to a particular treatment (Z)) given observed
baseline covariates (X,) with Pr(Z, = 1 /X.).* By condition-
ing on the PS, researchers try to create positivity; that is,
if a given combination of covariate values is observed in
one cohort, it should also appear in the other cohort under
comparison.” Under the assumption of no unmeasured con-
founding and a correctly specified PS model, unbiased treat-
ment effects may be estimated, for example, via matching or
weighting on the PS.

There is ongoing debate about the ideal strategy to
correctly specify the PS®° and in the majority of cases,
logistic regression models are fitted using a set of a priori
investigator-defined covariates.'® This approach is straight-
forward but may be error-prone when interaction terms or
higher-order relationships are not appropriately modeled.'!
Moreover, as healthcare databases are getting increasingly
complemented by more dimensions like genomics, select-
ing the correct set of covariates on a manual basis becomes
infeasible and automatable data-adaptive methods are
warranted.

With the ability to handle high-dimensional datasets
in a nonlinear and automatable fashion, deep learning mod-
els are highly attractive approaches to solve these prob-
lems.!'? We aimed to investigate if autoencoders, which are
unsupervised deep learning encoder-decoder architectures
that learn a latent non-linear lower-dimensional covari-
ate representation, might be leveraged as a data-adaptive
alternative to compute PS for comparative effectiveness
research.

The objective of this study is two-fold. First, we com-
pare the performance of covariate balancing and confounding
bias reduction with the autoencoder-based PS as compared
with established adjustment strategies in a simulation frame-
work among cancer patients with a first-line (1L) systemic
anticancer treatment. In the second part of this study, we will
emulate the 2015 published PRONOUNCE trial'? by apply-
ing the trial’s major protocol elements to the observational
database setting of this study to illustrate the application of
the autoencoder-based PS to a real comparative effectiveness
use case.

© 2021 Wolters Kluwer Health, Inc. All rights reserved.

METHODS

Data Sources and Study Population

For this retrospective real-world data study, we used
the nationwide Flatiron Health EHR-derived de-identified
database which includes data from over 280 cancer clinics
including more than 2.2 million US cancer patients avail-
able for analysis. The de-identified patient-level data in the
EHRs include structured data (e.g., laboratory values and pre-
scribed drugs) in addition to unstructured data collected via
technology-enabled chart abstraction from physician’s notes
and other unstructured documents (e.g., biomarker reports). In
this study, we selected patients out of tumor-specific databases
and pooled them into a single cohort. Patients were eligible to
be included if they were diagnosed with any primary tumor
and received a 1L systemic anticancer treatment (CONSORT
diagram, Figure 1).

Data Curation and Covariate Ascertainment

We considered covariates for modeling if they were
applicable across all tumor types and for at least 20% of all
patients (eTable 1; http://links.lww.com/EDE/B777). We
imputed missing covariates or those with implausible values
(as defined as being outside of 1.5 x the interquartile range
from the quartiles Q1 and Q3, respectively'#) using median
imputation for continuous covariates or assigning a miss-
ing indicator category to one-hot encoded categorical vari-
ables.!>!® In addition, we derived empirical covariates (EC)
of lab and vital sign tests. As the Flatiron Health EHR-derived
de-identified database does not contain records of claims, pro-
cedure codes, and outpatient diagnosis codes, these EC were
derived from the frequency of clinical laboratory tests and
vital sign tests (which corresponds to steps 1-3 of the high-
dimensional PS algorithm'”7), which resulted in 123 additional
covariates (eTable 1; http://links.lww.com/EDE/B777). All
covariates were measured at or before the start of 1L therapy
(=index date) with a maximum lookback window period of
90 days relative to the index date (eFigure 1; http://links.lww.
com/EDE/B777).'%1°

Non-linear Latent Variables and Propensity
Scores Computed by Autoencoder

The following section briefly illustrates the autoencoder-
based PS computation (terminology used in this paragraph is
defined in eAppendix1; http://links.lww.com/EDE/B777 and
in Bi et al??).

Autoencoders are unsupervised neural network architec-
tures that generally consist of an input layer, a lower-dimensional
hidden “bottleneck” layer, and an output layer with the same
dimensions as the input layer. Conceptually, the autoencoder-
based PS computation can be described as follows (Figure 2).
All available information about a patient may be defined as a
high-dimensional covariate vector serving as the input layer.
This input layer is sequentially compressed to arrive at a latent
nonlinear lower-dimensional covariate representation in the
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| N = 199,225 patients in total |

]

N = 1,250 patient(s) excluded with >1 record because of multiple (second, third, ...) tumors

| N = 197,975 patients remaining |

]

N = 46,009 patients excluded with no recorded first line therapy |

| N =151,966 patients remaining |

]

N = 2,357 (duplicate) patients excluded with multiple sub-lines within the first line

| N = 149,609 patients remaining |

—-| N = 21,235 patients without activity in 90 days after latest diagnosis date

| N = 128,374 patients remaining |

—-| N = 6 patients with missing/implausible follow-up |

| N = 128,368 patients eligible for simulation |

FIGURE 1. Consort diagram illustrating selection of eligible patients for simulation.

1

v

Sigmoid

ReLU ReLU Sigmoid
. Trained . Reconstruction
Encoding embedding Decoding of the input
7| Logistic
regression
Pr(Z, = 1/X)

FIGURE 2. Conceptual architecture of patient representation learning and autoencoder-based propensity score computation.

Figure is available in color online.

hidden bottleneck layer (encoding). Given the lower-dimen-
sional information of the bottleneck layer, the actual input
information can be reconstructed (decoding); the decoded
information is leveraged in autoencoders to adjust the network
parameters in each iteration by computing the loss between
the actual data and the predicted reconstruction. Due to the
compression and the optimization of parameters of the neural
network in each encoding—decoding iteration step, the autoen-
coder learns essential features describing the highest variance
of a dataset. This way the bottleneck layer captures the true
data manifold in a much lower-dimensional representation
(embedding) that can eventually be used to specify the PS.

380 | www.epidem.com

After the above described general setup, we developed
an autoencoder architecture (details on architecture, hyperpa-
rameters, and code can be found in eAppendix1; http://links.
Iww.com/EDE/B777). To compute the PS based on the trained
embedding, we used a logistic regression as the final output layer.

Propensity Score Estimation Methods for
Comparison

To investigate the performance of an autoencoder-based
PS, we chose established adjustment (multivariable regres-
sion) and PS estimation methods (manual variable selec-
tion, principal component analysis [PCA], and LASSO) for

© 2021 Wolters Kluwer Health, Inc. All rights reserved.
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comparison employing a simulation framework (Table 1).
We additionally extended all machine learning models by the
set of EC that were derived as described above (EC extended
models 7-9). For more details see eAppendix1; http://links.
lww.com/EDE/B777.

Simulation Setup

The overall objective was to simulate different realistic
scenarios of confounding bias between a fictional head-to-
head drug comparison and to investigate the resulting balanc-
ing and adjustment after 1:1 PS matching with PS computed
using the aforementioned PS estimation methods (Table 1).
We defined the outcome of interest for this simulation study
as overall survival, which we computed as the time from index
date to death due to any reason or censoring.

The general simulation algorithm is illustrated in
Figure 3A. In brief, all eligible patients were equally random-
ized to either a drug A or a drug B cohort to remove any
prognostic association of the covariates to the assignment
probability to one of the cohorts. This resulted in a hazard
ratio (HR) for overall survival of 1.00 (95% confidence inter-
val [CI]=0.99, 1.01), which served as the true estimate in this
simulation (eFigure 2; http://links.lww.com/EDE/B777). In a
next step, we grouped patients into prognostic quartiles (Q1—
Q4) according to their baseline hazards towards the outcome
(overall survival) with patients in Q1 having a good progno-
sis (lowest hazard) to patients in Q4 having a poor prognosis
(eFigure 3 and eTable 2; http://links.lww.com/EDE/B777).
The prognostic quartiles are based on a published prognos-
tic score for overall survival (eFigures 4 and 5; http://links.
lww.com/EDE/B777) that was developed within a large pan-
cancer cohort and is derived from a formula with strongly

prognostic demographic, clinical, routine hematology, and
blood chemistry parameters (eTable 3; http://links.lww.com/
EDE/B777) that were modeled within a Cox proportional
hazard framework to derive a multivariable prognostic risk
model for overall survival.?! The resulting prognostic score
was validated in two independent phase I and III clinical stud-
ies. To simulate baseline imbalances, we exploited the corre-
lation between prognostic score-based balance measures for
PS models with bias in the treatment effect estimate using
conditional resampling as described in the following.?? Out of
the drug A cohort, we sampled 10,000 patients completely at
random and independent of their assignment to the prognos-
tic quartiles to arrive at a homogenous sample with a constant
prognosis in each replication step. In contrast, we sampled
10,000 patients randomized to the drug B cohort with a con-
ditional sampling probability based on their assignment to a
prognostic quartile (e.g., scenario 1: patients in Q1 were sam-
pled with a probability of 40%, in Q2 with 30%, in Q3 with
20%, and in Q4 with 10%). Because quartile membership is
associated with overall survival, the conditional sampling of
the drug B cohort (as compared to the random sampling of
the drug A cohort) naturally induces a spurious association,
which is solely driven by the variables defining the quartiles.
We applied this sampling scheme in total 27 different sam-
pling probabilities with 100 replications each to simulate var-
ious scenarios of confounding bias yielding biased estimates
with different magnitudes and directions away from the true
HR of 1.00 (Figure 3B).

We finally assessed the comparative performance of
each PS computation method as to how much each method
was able to adjust for the above described induced spuri-
ous association. For this purpose, we matched the resulting

TABLE 1. Models and Adjustment Strategies Compared in Simulation Framework
Data-adaptive
Covariate Selection/ Covariates Adjusted for or
Model Adjustment Strategy® Transformation Potential Covariates to Choose from
1 Unadjusted — —
2 Multivariable regression No Age, cancer entity, gender, stage, histology, healthcare provider, race/ethnicity, time from initial
(direct outcome model) cancer diagnosis to 1L initiation, calendar year of initial cancer diagnosis
3 Manual variable selection No Age, cancer entity, gender, stage, histology, healthcare provider, race/ethnicity, time from initial
cancer diagnosis to 1L initiation, calendar year of initial cancer diagnosis
LASSO Selection All generally available covariates®. Algorithm picks covariates according to shrinkage/regularization
5 PCA Transformation  All generally available covariates®. Algorithm computes linear transformation of all covariates in a data-
set to principal components (PCs) of which the top n PCs, explaining 80% variance, were chosen
6 Autoencoder Transformation  All generally available covariates®. Algorithm computes lower-dimensional representation of j
dimensions based on non-linear data operations into latent-space variables
7 LASSO EC Transformation =~ Model 4+ 123 empirical covariates®
8 PCA EC Selection Model 5+ 123 empirical covariates®
Autoencoder EC Transformation ~ Model 6+ 123 empirical covariates®

In model 2 the estimate is directly computed from a multivariable regression while models 3-9 are based on propensity score matching.

"Total of 318 demographic, clinical, cancer-/disease-specific covariates (eTable 1; http://links.lww.com/EDE/B777).

“Total of 123 empirical frequency covariates derived, corresponds to steps 1-3 of the high-dimensional propensity score algorithm (eTable 1; http://links.lww.com/EDE/B777).
1L indicates first-line systemic cancer treatment; LASSO, least absolute shrinkage and selection operator; PC(A), principal component (analysis).

© 2021 Wolters Kluwer Health, Inc. All rights reserved.
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A Identification of 128,368 1L treated cancer patients

Random assignment to Drug A and Drug B

= not associated with any variable
= True Hazard Ratio (HR) 1.00 (95% CI 0.99-1.01)

Assignment to prognostic score (ROPR0O) quartiles (Q1-Q4)

27 sampling scenarios +
100 iterations

T

Random sampling of 10,000
pling Cox

Drug A patients

regression

\—~ 1:1 PS matching «

1.24

—_
-

Hazard ratio (HR)
=

b
©

Conditional sampling of
10,000 Drug B patients based
on prognostic quantile

N Bias gradient >

Biased in favor of ,Drug B*

Biased in favor of ,Drug A"

FIGURE 3. A, Sampling algorithm for simulation and (B) overview of magnitude of induced confounding bias by simulation sce-
nario. Q indicates quartile; ROPRO, real-world prognostic score. Figure is available in color online.

cohorts without replacement in a 1:1 ratio with a caliper width
of 0.2 SDs of the predicted PS logit,”® and HRs were esti-
mated using Cox proportional hazards regression models with
a robust variance estimator.?* Simulations of treatment effects
other than a null treatment effect were not considered to avoid
complications with the collapsibility?® and proportional haz-
ards assumption®® of HRs.

We assessed the overall balance in the distribution
of important baseline covariates after PS matching using
standardized mean differences (SMD) with a cutoff of <0.1

382 | www.epidem.com

indicating sufficient balance.?” To assess the average devia-
tion of the resulting HRs and the true HR of 1.00, we com-
puted the root mean square error (RMSE) as performance
metrics. To measure the uncertainty of the point estimates,
we computed the coverage probability as the proportion of
times the estimated 95% CI included the true HR of 1.00.2%2°
Additionally, we estimated the absolute bias (in percent) as

|HRpooled - HRTrue . . .
| m x100| for each simulation scenario.’?

True
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Case Study

To illustrate the application of the autoencoder-based
PS in comparative effectiveness research, we emulated the
PRONOUNCE trial by applying the major protocol design
elements of this trial within the observational Flatiron Health
EHR-derived de-identified database.

In brief, the PRONOUNCE trial was a randomized,
open-label, phase III trial aimed at evaluating the comparative
efficacy of carboplatin/pemetrexed followed by pemetrexed
maintenance versus bevacizumab/carboplatin/paclitaxel fol-
lowed by bevacizumab maintenance as 1L treatment among
advanced nonsquamous non-small-cell lung cancer patients.'3
In terms of overall survival, the PRONOUNCE trial did not
find a difference in treatment efficacy for either of the combi-
nations, which served as our expected outcome for the emula-
tion of this trial.

For the implementation of the major in-/exclusion crite-
ria and study design elements, we followed the target trial emu-
lation framework by Hernén and Robins®! and summarized the
comparison to the original in eTable 4 and eFigure 6; http://
links.lww.com/EDE/B777. Instead of a random assignment to
either treatment strategy in a 1:1 ratio in the original trial, we
applied PS matching (applying the different PS computation
approaches) in a 1:1 ratio (nearest neighbor without replace-
ment as main analysis)®? and standardized mortality ratio
(SMR) weighting (sensitivity analysis).’3 We derived estimates
for overall survival using Cox proportional hazards regression
with the initiation of maintenance therapy as start of follow-up.
The causal contrast of interest was analyzed as the counter-
factual comparison of initiators of the two different treatment
strategies as an observational equivalent of the RCT’s intent-
to-treat analysis. Further details are outlined in the supplemen-
tary methods (eAppendix1; http:/links.Iww.com/EDE/B777).

RESULTS

The characteristics of the eligible simulation popula-
tion are displayed in eTable 5; http://links.Iww.com/EDE/
B777. Results of the hyperparameter selection and evaluation
are illustrated in the supplementary material (eFigures 7-11;
http://links.lww.com/EDE/B777) and computation times for
the autoencoder models and simulations are summarized in
eFigures 12 and 13, and eTable 6; http://links.Iww.com/EDE/
B777, respectively.

Simulation—Balancing Properties

Figure 4 summarizes the average balancing performance
of important baseline characteristics by simulation scenario.
In general, most PS estimation methods led to sufficient bal-
ancing of important patient characteristics at baseline (SMD
<0.1). In some scenarios, imbalances for some covariates were
observed for PS computed using manual variable selection.
Investigating SMDs by scenario indicated that those imbal-
ances resulted from some of the more extreme confounded
scenarios (eFigure 14; http:/links.lww.com/EDE/B777).

© 2021 Wolters Kluwer Health, Inc. All rights reserved.

Simulation—Root Mean Square Error, Percent
Bias, and Coverage

The overall results across all simulated scenarios and
iterations are illustrated in Table 2. Estimates without any
adjustment resulted on average in high RMSEs (0.1205)
and bias (10.4% bias) and low coverage (16.41%). When
covariates were manually chosen (models 2 and 3), the PS
method led on average to a lower RMSE (0.0670 vs. 0.0790),
bias (5.73% vs. 6.75%), and a higher coverage (32.81% vs.
27.67%) as compared with choosing the same covariates for
direct outcome regression, respectively. Point estimates were
observed to scatter broadly around the null for both methods
(eFigure 15; http://links.Iww.com/EDE/B777). Comparisons
between model standard errors and empirical standard errors
indicated a less reliable variance estimation for models 1-3
(eTable 7; http://links.lww.com/EDE/B777). The PCA PS esti-
mation method led to a noticeable improvement in adjustment
performance as compared with selecting covariates manually
with a RMSE of 0.0293 and 0.0329 for PCA and PCA EC,
respectively. Employing an autoencoder-based estimation of
the PS led to further improvements in RMSEs of 0.0248 and
0.0265, bias of 2.00% and 2.15%, and coverage of 87.70%
and 85.19% for autoencoder and autoencoder EC, respec-
tively. The best adjustment performance was observed with
both LASSO approaches with around 1.7% bias and nearly
94% coverage.

We observed the same pattern when we compared the
point estimates by simulated scenarios (Figure 5). As expected,
unadjusted estimates ranged from approximately 0.8 to over
1.2. Both LASSO approaches followed by the autoencoder
approaches demonstrated the best adjustment performance in
most of the cases. In particular, we observed that the LASSO
EC model had the best CI coverage to include the true HR in
at least 95% of the times in 14 out of the 27 simulated sce-
narios (Figure 5 and eTables 8-10; http://links.Iww.com/EDE/
B777). When the percent bias was compared by simulated
scenario, the results were consistent with <2% (LASSO and
LASSO EC) and 3% (autoencoder and autoencoder EC) bias
in almost all of the scenarios (Figure 6 and eTable 9; http://
links.lww.com/EDE/B777).

Sensitivity Analyses

When we changed the autoencoder architecture from
three hidden layers to one in sensitivity analysis I, the per-
formance of the autoencoder-based models slightly improved
(eTable 11; http://links.lww.com/EDE/B777). The overall per-
formance remained nearly the same when the main architec-
ture was altered to having a 128-dimensional bottleneck layer
size in sensitivity analysis II (eTable 12; http://links.lww.com/
EDE/B777). Combining the architecture alterations from sen-
sitivity analyses I and II, results of the autoencoder approach
were comparable to the ones of the LASSO approaches with
an average RMSE of 0.0203 (eTable 13; http://links.lww.com/
EDE/B777). When taking all possible PCs, instead of those
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FIGURE 4. Baseline covariate balance by propensity score computation method and simulation scenario. Average SMDs are
displayed for each of the 27 scenarios per baseline characteristic. ALP indicates alkaline phosphatase; ALT, alanine aminotransfer-
ase; AST, aspartate aminotransferase; BMI, body mass index; ECOG, Eastern Cooperative Oncology Group (ECOG) Performance
Status; LASSO, least absolute shrinkage and selection operator; LDH, lactate dehydrogenase; NLR, neutrophil-to-lymphocyte
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TABLE 2. Summary of Adjustment Performance Across All
Scenarios

Method RMSE Bias (%) CI Coverage (%)
Unadjusted 0.1205 10.4 16.41
Multivariable regression 0.0790 6.75 27.67
Manual variable selection 0.0670 5.73 32.81
LASSO 0.0205 1.65 93.74
PCA 0.0293 2.39 79.59
Autoencoder 0.0248 2.00 87.70
LASSO EC 0.0210 1.69 93.52
PCA EC 0.0329 2.71 74.00
Autoencoder EC 0.0265 2.15 85.19

LASSO indicates least absolute shrinkage and selection operator; PC(A), principal
component (analysis).

describing 80% of the cumulative variance explained, the per-
formance according to RMSE and bias decreased while the
coverage improved (eTable 14; http://links.lww.com/EDE/
B777). Increasing the number of replications to 500 did not
noticeably change the results of the main analysis, indicating
that 100 replications per scenario were sufficient (e¢Table 15;
http://links.lww.com/EDE/B777).

Case Study

There were 781 patients eligible for the case study
(eFigure 16; http://links.lww.com/EDE/B777). The results
are summarized in Figure 7. All analyses suggested a null
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association with the unadjusted point estimate being slightly
below the null. All adjusted models ranged between point
estimates of 1.00-1.09 with the autoencoder analysis being
slightly closer to the null (HR . 1.01 [95% CI = 0.80,
1.27] vs. HR jponounce 1-07 [0.83, 1.36]) as compared with
the autoencoder EC model (HR 1.09 [95% CI = 0.87, 1.37]).
SMR weighting led to very similar estimates with the excep-
tion of the LASSO approaches having much wider Cls (eFig-
ure 17; http:/links.lww.com/EDE/B777).

DISCUSSION

In this RWD study, we developed a novel automated
autoencoder-based approach and compared it with estab-
lished approaches. Using a comprehensive simulation frame-
work, we observed that in terms of confounding control, the
autoencoder-based approach led to reasonable results, but did
not perform substantially better than some of the established
approaches such as LASSO. In an empirical case study emu-
lating the PRONOUNCE trial using observational data, the
autoencoder-based results were consistent with the conclusion
of the original trial.

PSs are frequently used analytical tools (eFigure 18;
http://links.lww.com/EDE/B777) since they enable research-
ers to collapse many dimensions of confounding covariates
into a single dimension while still maintaining sufficient pre-
cision. The advantage of deep learning-based PS is the abil-
ity to easily handle large amounts of data involving complex
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associations between covariates. An earlier study from 2008
investigated different techniques in PS estimation with various
non-linear and non-additive associations on 10 binary/contin-
uous covariates and concluded that even a rather simple neu-
ral network outperformed recursive partitioning algorithms in
terms of providing the least numerically biased estimates.>*

© 2021 Wolters Kluwer Health, Inc. All rights reserved.

color online.

This may suggest that the appropriate modeling of potentially
non-linear covariate structures may be of relevant importance
for confounding control. Especially analyses in EHR data may
benefit from autoencoder-based PS as these usually capture
routine care laboratory measurements and vital sign param-
eters which have been shown to be of paramount prognostic
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PS estimation method N Events
Unadjusted 781 606
Multivariable regression 781 606
Autoencoder 372 291
LASSO 372 297
PCA EC 372 293
LASSO EC 372 300
PCA 372 297
Manual variable selection 372 296
PRONOUNCE trial 361
Autoencoder EC 372 297

Hazard Ratio HR 95% CI
0.98 0.82-1.19
1.00 0.82-1.21
1.01 0.80-1.27
1.01 0.81-1.27
1.03 0.82-1.29
1.03 0.82-1.29
1.04 0.83-1.30
1.05 0.84-1.32
1.07 0.83-1.36
: . 1.09 0.87-1.37
0.5 1 2

Favors Carbo,Pem Favors Beva,Carbo,Pac

FIGURE 7. Forest plot illustrating HRs and 95% confidence intervals (Cls) for overall survival by PS estimation method. HR indi-
cates hazard ratio; LASSO, least absolute shrinkage and selection operator; PCA, principal component analysis.

value.?!* This may explain why in this study the autoencoder-
based PS performed better than the PCA approaches since, in
case of no nonlinearity, both methods should in principle lead
to similar results.’® However, given that continuous covari-
ates are still usually rather rare in healthcare databases, we
may have underestimated the abilities of the autoencoder-
based approach in this study and further studies are warranted
once multimodal data elements, such as medical images and
sequencing data, complement contemporary databases.’’

Application and Use Cases

The autoencoder-based PS can be generally used in
any type of comparative effectiveness study where sufficient
confounder balancing between two cohorts is required. In
the here presented comparative effectiveness case study, it
was possible to derive the same qualitative conclusion as in
the PRONOUNCE trial by applying autoencoder-based PS.
Although the primary objective in the case study was to test
the use of autoencoder-based PS in a real comparative effec-
tiveness research setup, the equal results of all methods may
be explained with the fact that confounding bias was not as
strong in this particular research question as compared to
some of the more extreme scenarios in the simulation. This
seems plausible given that due to the variety of possible treat-
ments and sometimes lacking evidence for the most effective
combination, the selective channeling of patients with higher
risk (as often observed with prescription drugs like COX-2
inhibitors vs. nonselective nonsteroidal anti-inflammatory
drugs) may not be apparent. This may underline an attractive
feature of the autoencoder-based PS, which could be used as
an automated and data-adaptive sensitivity analysis in com-
parative effectiveness studies with unknown extent of con-
founding bias.

Especially in the era of precision medicine, in which
treatment decisions for specific subpopulations of patients
are based on distinct molecular characteristics, comparative

386 | www.epidem.com

effectiveness research might play an increasingly important
role in addressing challenges, for example, in the area of early
clinical development of new therapeutics. Here, designs such
as external control arms are interesting approaches that could
benefit by advanced analytics like deep learning-based PS.
A recent proof-of-concept study assessed how well external
controls could have approximated the actual standard-of-care
controls in nine lung cancer trials.>® The authors reported that
the comparison of estimates between RCTs and external con-
trols resulted in a Pearson correlation coefficient of 0.86. This
is an encouraging example suggesting that external control
arms come with a sufficient validity and can play an impor-
tant role in facilitating real-world data to support early clinical
development and regulatory submissions.>*

Strengths and Limitations

Due to the nature of routinely collected health records,
there is missing data. In this study, we employed median
imputation and assigning a missing-indicator category to
one-hot encoded categorical variables because this or simi-
lar approaches were suggested to have good performance in
studies with large datasets where multiple imputation would
be computationally very expensive and generally not opera-
tionalizable.'®*" This approach is also supported by various
recent prediction models trained on EHR data which reported
outstanding performance.'>*!

In addition, data-adaptive approaches always inherit
the risk of including covariates that may be collider covariates
(M-bias), instrumental covariates (Z-bias), or causal interme-
diates. Colliders are covariates that open a causal path from
exposure to outcome.* Including such covariates in the PS com-
putation may induce a spurious association where in fact there
is none. Besides directed acyclic graphs, there is no formal way
to test for colliders, making it difficult to exclude such variables
before PS computation. However, Schneeweiss® found that
under realistic scenarios a collider-induced bias was negligible
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and outweighed by the adjustment effect for other covariates.
Instrumental variables (IV) are covariates that are only associated
with the exposure but not with the outcome. IVs are frequently
used to control for unmeasured confounding* but also introduce
bias (Z-bias) when conditioning on them. Especially in oncology,
calendar period effects are strong predictors for therapy decisions
once new breakthrough treatments are approved.* Although
there is a theoretical chance to have unintentionally included IVs,
Myers et al*® showed that only in the presence of strong unmea-
sured confounding does Z-bias have effects worth mentioning.
While expert knowledge plays an important role in avoiding
covariates that could mediate the association between exposure
and outcome,*’ the risk of adjusting for causal intermediates can
also be mitigated with appropriate study designs such as an active
comparator, new user design as applied in this study.**

A unique strength of this study is the novelty approach
to learn patient representations for PS computation in a data-
adaptive manner, which we found to have a reasonable per-
formance and which may serve as a promising tool for the
future once more data elements complement contemporary
databases. Applying comprehensive sensitivity analyses, we
found the methodology to be robust as all setups and scenar-
ios resulted in a similar conclusion. The observation that the
autoencoder architecture with less hidden layers and a larger
bottleneck layer led to results closer to LASSO gave some con-
cern that this may have been the consequence of overfitting of
the main model. Nevertheless, differences were marginal and
did not change the main conclusion while the hyperparameter
setup of the main model was found to be a reasonable trade-off
between compactness of the resulting embedding and suffi-
cient reconstruction performance and generalizability.

It is further important to credit that the autoencoder
approach is a pure unsupervised method, which means that
the confounding control in this study has been solely achieved
without optimizing the network towards the probability of
patients receiving the treatment, which needs to be acknowl-
edged when comparing to supervised approaches like LASSO.
Hence, potential deep-learning architectural extensions would
be of utmost interest, for example, by jointly modeling targets
and inputs using end-to-end learning architectures.

A limitation of this simulation is that due to the non-col-
lapsibility of HRs, only a null treatment effect could be simu-
lated which may in future research be addressed by estimating
risk-differences and more sophisticated simulation techniques
such as plasmode simulations.***’ In addition, variance esti-
mation seemed to be less reliable for models 1-3 (eTable 7,
http://links.lww.com/EDE/B777), limiting the ability to make
final conclusions about their true CI coverage.

For this study, it was possible to use a large underlying
population to train and empirically examine the comparative
performance of the proposed autoencoder approach. This real-
world database provided comprehensive oncology-specific
data, which underwent a rigorous data quality assurance pro-
cess before release.

© 2021 Wolters Kluwer Health, Inc. All rights reserved.

Finally, it is important to acknowledge that this study pri-
marily focused on the analytical aspects to reduce confound-
ing. Carefully chosen analysis always needs to go along with
a causal study design to avoid serious biases such as reverse
causality and immortal time bias, which are known as sources
for much larger bias than conventional confounding.*3-°

CONCLUSIONS

In summary, we developed an autoencoder-based
PS computation that our assessment found to be a feasible
approach to reduce confounding bias, although not with a
substantially stronger performance than some of the estab-
lished approaches such as LASSO. As a promising tool for
the future, it may be considered alongside with established
approaches in non-randomized comparisons in comparative
effectiveness research.
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