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Abstract

Given the impact artificial intelligence (AI)–based medical technologies (hardware devices, software programs, and mobile apps)
can have on society, debates regarding the principles behind their development and deployment are emerging. Using the
biopsychosocial model applied in psychiatry and other fields of medicine as our foundation, we propose a novel 3-step framework
to guide industry developers of AI-based medical tools as well as health care regulatory agencies on how to decide if a product
should be launched—a “Go or No-Go” approach. More specifically, our novel framework places stakeholders’ (patients, health
care professionals, industry, and government institutions) safety at its core by asking developers to demonstrate the
biological-psychological (impact on physical and mental health), economic, and social value of their AI tool before it is launched.
We also introduce a novel cost-effective, time-sensitive, and safety-oriented mixed quantitative and qualitative clinical phased
trial approach to help industry and government health care regulatory agencies test and deliberate on whether to launch these
AI-based medical technologies. To our knowledge, our biological-psychological, economic, and social (BPES) framework and
mixed method phased trial approach are the first to place the Hippocratic Oath of “Do No Harm” at the center of developers’,
implementers’, regulators’, and users’ mindsets when determining whether an AI-based medical technology is safe to launch.
Moreover, as the welfare of AI users and developers becomes a greater concern, our framework’s novel safety feature will allow
it to complement existing and future AI reporting guidelines.

(J Med Internet Res 2023;25:e43386) doi: 10.2196/43386
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Introduction

Artificial intelligence (AI) can be described as the theory and
development of computer systems able to perform tasks that
normally require human decision-making [1]. In medicine, the
idea that clinical decisions can be made almost instantly using
health care data spanning multidisciplinary domains seemed
impossible 3 decades ago. However, with AI algorithm-based
medical technologies, diagnoses and care plans that use a large

repository of health care data are nearing real-time application
for personalized medicine [2].

The use of these tools promises to significantly improve health
care delivery, reduce wait times and costs, and expand access
to care worldwide [2]. Nevertheless, it would be naïve to think
that AI technologies are infallible. For instance, they can be
developed for unethical reasons, such as Volkswagen’s AI
algorithm used to pass emission tests with environmentally
unfavorable vehicles. Private-sector AI medical technology
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companies might also be subject to similar temptations,
especially when reimbursement rates are based on metrics that
do not always reflect better care [3].

In light of the impact AI-based medical technologies can have
on society, debates regarding the principles behind their
development and deployment are emerging. National and
international organizations have responded to these concerns
by creating ad-hoc expert committees to develop policies and
guidelines [1]. This includes the European Commission’s
High-Level Expert Group on Artificial Intelligence, the AI in
society expert group of the Organization for Economic
Co-operation and Development (OECD), the US Food and Drug
Administration (FDA), Health Canada, and the United
Kingdom’s Medicines and Healthcare Products Regulatory
Agency’s (MHRA) joint development of “Good Machine
Learning Practice” principles [1,4].

Private sector corporations have also created policies regarding
AI technologies. For instance, in 2018, Google and SAP publicly
disclosed their AI guidelines and principles. Recommendations
for AI technology guidelines and principles have also been made
by nonprofit organizations such as Amnesty International [1].

Nevertheless, most AI policies, guidelines, and frameworks are
often designed for a select group of stakeholders, use language
unfamiliar to health care professionals and patients, often
provide guidance only on the implementation, adoption,
evaluation, and regulatory aspects of AI medical tools, and
overlook the Hippocratic Oath of “Do No Harm” in deciding
whether it is safe to launch a product.

The biopsychosocial model was developed over 40 years ago
to help understand the etiology of medical conditions and
formulate care plans from a multidisciplinary perspective. This
is achieved by examining the relationship between the
pathophysiology (biological), psychological, and social factors
involved in a medical condition [5]. Using the
biological-psychological, economic, and social (BPES) model
as our foundation, we propose a 3-step framework to guide
developers of AI-based medical technologies (hardware devices,
software programs, and mobile apps) on how to decide if they
should launch their tool—a “Go or No-Go” approach. More
specifically, our framework places stakeholders’ (patients, health
care professionals, industry, and government institutions) safety
at its core by asking developers to demonstrate the BPES value
of their AI tool before it is launched (Table 1 and Figure 1).

Table 1. The biological-psychological, economic, and social framework safety checklist.

Social perspective—stakeholder
safety research evidence provided
(yes or no with supporting evidence)

Economic perspective—stakeholder
safety research evidence provided
(yes or no with supporting evidence)

Biological-psychological perspective—stake-
holder safety research evidence provided
(yes or no with supporting evidence)

Stakeholders

Patients

Health care professionals

Industry

Government—public
health agency

Figure 1. The “Do No Harm” biological-psychological, economic, and social safety checklist framework for assessing the launch of artificial
intelligence–based medical technologies.
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The novel safety feature of the BPES framework also separates
it from other AI medical technology models by addressing the
Collingridge dilemma. This occurs when policy making
regarding a new technology is delayed as the impact on society
cannot be predicted until it is extensively developed and used.
However, once the technology is engrained in society and its
harmful effects become evident, it might be too late to act [6].
Moreover, as the welfare of AI users and developers becomes
a greater concern, our framework’s novel safety feature will
allow it to complement existing and future AI reporting
guidelines such as “DECIDE-AI” (Developmental and
Exploratory Clinical Investigations of Decision support systems
driven by Artificial Intelligence) [7]. This guideline was recently
launched and developed for early stage clinical evaluation of
decision support systems that are driven by AI. The DECIDE-AI
guideline checklist recommends the user apply a framework
(Human Factors) along with a method to identify and discuss
the safety as well as errors of an AI tool [7]. The BPES
framework can facilitate this by providing a context of safety
and errors to consider (BPES) when clinically evaluating an AI
tool during its early stage.

Biological-Psychological Factor—Does
the AI Medical Technology Cause
Physical-Mental Health Benefit or Harm
to the Stakeholders Involved?

Patient Perspective
When determining if an AI medical technology should be
launched, an assessment of whether it improves a clinical
outcome (ie, medical diagnosis, prognosis, and care plan;
biological-psychological factor) without increasing the risk of
harm to the patient should be considered. For example, a novel
deep learning architecture has been developed that uses a
heterogeneous set of 3D optical coherence tomography scans
to diagnose and refer retinal disease [8]. More specifically, this
AI algorithm classifies the findings from scans into different
pathologies while providing clinicians with care plan
recommendations (urgent, semiurgent, routine referral, or
observation). Remarkably, this AI medical tool has reached or
exceeded expert decision-making on a range of
vision-threatening retinal diseases. Moreover, it reduces the risk
of harm to patients as its aggregated number of wrong referral
decisions is lower than human experts (retina specialists and
optometrists) [8].

Health Care Professional Perspective
An AI medical technology should also provide health care
professionals with an accurate diagnosis, prognosis, and
effective care plan without increasing their risk of harm or
work-related burden. For example, an individual presenting to
the emergency department with sudden onset breathlessness
can receive numerous differential diagnoses and management
of care plans. Nevertheless, an effective AI medical tool should
assist clinicians in making an accurate diagnosis, prognosis,
and care plan based on the data obtained from the patient’s
history, examination, and investigations. Moreover, it should
not create confusion, consume more resources, or lengthen the

duration required to establish a diagnosis, prognosis, and care
plan.

Industry and Government Perspectives
From industry and government perspectives, AI technologies
should reduce medical risks to the population and improve
public health measures. For instance, one AI tool passively
listened to individuals speak on their cellphone, recognized
speech patterns associated with “thought disorder,” and
predicted the onset of a psychotic episode in high-risk youth.
With 100% accuracy, this AI algorithm identified several
individuals who later developed psychosis and outperformed
identification from clinical interviews [9]. In addition to
predicting disease, medical technologies that use AI should
provide rapid and accurate information to public health
organizations. For example, an AI medical tool mined data from
over 5 million Twitter posts and predicted a flu outbreak with
an accuracy of 0.89. This AI technology used natural language
processing and outperformed the current advanced public health
methods used [10].

Biological-Psychological “No-Go” Case
Unfortunately, from a biological “Do No Harm” perspective,
not all developers of AI medical technologies demonstrate
stakeholder safety before launching their products. For instance,
wearable devices using AI tools such as the “Apple Watch”
were marketed to detect atrial fibrillation and provide guidance
to the user. Several studies have since evaluated this claim,
which the company justified by stating 700,000 Americans with
atrial fibrillation remain undiagnosed at a cost of US $3.2 billion
in potentially avoidable arrhythmia-related strokes [11,12].
However, this wearable device was found to capture
false-positive results that increased anxiety among participants
as well as the number of misdiagnoses of atrial fibrillation
among young adults with a low pretest probability of having
an arrhythmia [12-14].

In this example, the product not only created more harm to the
patient by providing a misdiagnosis and increasing their anxiety
but also increased the workload on health care professionals
who had to manage the influx of patients presenting with a query
of atrial fibrillation. The industry was also harmed as similar
smartwatch devices had their diagnostic credibility questioned.
Finally, public health officials were harmed due to an increased
burden on their resources to assess the medical claims made by
these technologies and inform the population of any concerns
when using them. Had there been a “Do No Harm” stakeholder
checklist that required Apple to demonstrate its smartwatch’s
safety from a biological-psychological perspective, its launch
may have been delayed in favor of further product testing.

Economic Factor—Does the AI Medical
Technology Cause Economic Benefit or
Harm to the Stakeholders Involved?

The importance of having a value-based health care system is
fundamental given its share in the overall economy of many
developed countries. For instance, approximately 18% of the
total gross domestic product of the United States, roughly US
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$3.5 trillion, is used on health care expenditures [15]. Similarly
in Europe, Germany spends approximately 11.5% of its overall
gross domestic product (US $0.4 trillion) on health care costs
[15]. For this reason, another factor to consider when deciding
if an AI medical technology should be launched is whether its
economic benefits outweigh the costs incurred by the
stakeholders involved.

Patient Perspective
From a patient perspective, an economic “Do No Harm” safety
checklist would favor AI medical technologies that reduce their
financial burden while providing improved or equally effective
care when compared with the standard used. This is seen in the
FDA’s recently approved autonomous AI diagnostic system to
detect diabetic retinopathy (DR) in adults [16]. Using this tool,
a minimally trained operator supported by AI takes retinal
images using a nonmydriatic fundus camera. These images are
then assessed in real time at the point of care for the presence
of DR [16]. In 2020, this autonomous AI tool became a part of
the American Diabetes Association’s standard of care for DR
screening. A subsequent study examined its cost-effectiveness
in pediatric patients and found it more efficacious in diagnosing
DR and provided cost-savings (reduced out-of-pocket payments)
than the standard referral-based approach using ophthalmologists
or optometrists for screening examinations [16].

Health Care Professional Perspective
Deciding whether an AI medical technology is launched should
also be based on weighing the economic benefits and harms to
health care professionals. One example of this is to provide
financial incentives to physicians who reduce unnecessary
spending and wasteful care. This can be done using an AI tool
that identifies practitioners who are more likely to make
high-value and cost-effective decisions [17]. In a recent study,
the variation among physicians in delivering low-value health
care services and their predicted characteristics was investigated
[18]. Using Medicare claims of 3,159,834 beneficiaries served
by 41,773 primary care physicians, the rates of low-value
services were 60% higher for family physicians at the 90th
percentile of their provider organization compared with those
in the 10th percentile. Moreover, only 1.4% of physician
variation was explained by observable characteristics. Since
visible characteristics could not explain the variation in
physicians providing low-value care, an AI tool that measures
this might be used to identify and incentivize cost-effective
health care practices [18].

Industry Perspective
Regarding industry, an economic “Do No Harm” safety checklist
would favor AI medical technologies that reduce costs and
provide increased financial returns while ensuring patient, health
care professional, business, and public health well-being. For
example, drug research and development is often a long, costly,
and complex process. It can take years from the moment a
molecular target is identified to when a drug is developed,
approved, and marketed; with many candidates often failing
during the trial phases. This makes the drug discovery process
inefficient with a high financial risk placed on pharmaceutical
industries [19].

Nevertheless, AI is now being used to accelerate the process of
drug discovery by using deep learning model analysis that
reduces the dependency on slower and expensive physical
experiments [20]. These models have been effective in
predicting the bioactivity and toxicity of potential drugs,
identifying medication that fights antibiotic-resistant bacteria
in experimental models, and designing a drug that inhibits the
discoidin domain receptor 1 (DDR1; a receptor associated with
several morbidities, including fibrosis) in experimental models.
Regarding this DDR1 inhibiting drug, it was discovered in 21
days and experimentally tested using deep learning models in
46 days [20]. These models can also identify molecules that
differ from existing drugs in a clinically meaningful manner
and establish novel pathways for developing tools in fighting
drug-resistant pathogens as well as other medical conditions
[20].

Government Perspective
From a public health or government perspective, an economic
“Do No Harm” safety checklist would favor AI medical
technologies that use health resources efficiently while
promoting cost-saving and high-value care when compared with
the standard used. According to the Centers for Medicare and
Medicaid Services, hospitalizations accounted for the largest
amount of national health care expenditures in 2017 and 2018
[21].

Models using AI that predict the likelihood of an avoidable
hospitalization can target interventions that prevent adverse
health outcomes and reduce both individual as well as public
health costs. For example, in a study evaluating
risk-of-hospitalization (ROH) models using natural language
processing and AI developed by Blue Cross Blue Shield of
Louisiana (BCBSLA) compared with the standard DxCG
(Cotiviti) risk-score algorithms, the Blue Cross logistic
regression model had the highest area under the receiving
operator characteristics curve (0.862) based on a 10-fold
cross-validation result [22]. The Blue Cross AI model’s
predictability demonstrates how regional data can be used
accurately to identify patients with a high ROH so that health
care professionals can intervene earlier and reduce the financial
burden placed on patients as well as health care providers over
time [22].

Economic “No-Go” Case
From an economic “Do No Harm” perspective, not all
developers of AI medical technologies demonstrate stakeholder
safety before launching their products. For example, concerning
ROH AI models, an acute hospitalization event is often
dependent on access to and use of health care services. However,
both of these variables are influenced by racial and
socioeconomic disparities [21]. Disparities in access can result
in certain populations being underrepresented in the overall
target population and data used to predict an outcome of interest.
As a result, the model’s output may reflect systematic biases
while policies or interventions that use these models may
increase the risk of reinforcing and exacerbating existing
inequities [21].
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In one study, a commercial prediction algorithm widely used
to identify and assist patients with complex medical needs (an
approach that affects millions of people) in the United States
was found to have a significant racial bias. For example, at a
given risk score, Black patients were found to be significantly
sicker than White patients in most active chronic illnesses [23].
To remedy this disparity, the algorithm should have increased
the percentage of Black patients receiving additional care from
17.7% to 46.5%. However, its predictions were based on health
care costs rather than illness measures. Unequal access to health
care means less money is spent caring for Black patients when
compared with White patients and, thus, allows for racial biases
to arise when using this approach [23].

This study’s findings highlight the economic risks AI algorithms
can have on patients (focusing on cost of care instead of treating
or managing the illness), health care professionals (increasing
litigation risk due to inadequate care provided), industry
(creating distrust and litigation risks from patients as well as
health care professionals due to misrepresented patient care
metrics), and public health institutions (increasing the cost of
care for low socioeconomic and racial minority patients due to
worsening health status overtime). It also led to US government
officials calling for greater transparency and accountability
across the health care industry concerning how AI algorithm
use is audited and predictive model biases can be avoided [21].

Social Factor—Does the AI Medical
Technology Cause Social Benefit or Harm
in Terms of Access to Affordable Quality
of Care to the Stakeholders Involved?

Across medicine, bioethics, public health, and business, there
is increasing awareness that novel technology can affect society
asymmetrically. Some populations may benefit, others might
be harmed, and some may experience no effect at all. These
outcomes can cause or worsen existing inequities and exacerbate
social factors at all levels of society [24].

Social determinants of health are nonmedical factors that
influence health outcomes. They impact health inequities and
identify preventable differences in health status between
individuals. Several examples of social determinants of health
include access to affordable and quality health care services,
income and social protection, social support, employment, and
education [25]. However, providing access to affordable quality
of care is often viewed as a leading objective in improving
medical outcomes in a health care system [26]. For this reason,
the third factor to consider when deciding if an AI medical
technology should be launched is whether its benefits outweigh
its harms in providing access to affordable quality of care.

Patient Perspective
From a patient perspective, a “Do No Harm” safety checklist
would favor AI medical technologies that reduce barriers to
affordable quality of care while providing improved or equally
effective medical services when compared with the standard
used. For example, an AI-based electronic interviewer named
“Ellie” created by researchers in the United States increased

access to care by asking patients questions similar to those made
by clinicians [10]. Using a patient’s verbal response, facial
expressions, and vocal intonations, Ellie was able to detect signs
of depression as well as other medical and psychiatric
morbidities that were then followed up by clinicians. In a
randomized study, participants were informed that Ellie was
controlled by either a human or computer program. Interestingly,
participants who were informed that Ellie was controlled by a
computer program revealed more personal information [10].

Health Care Professional Perspective
Deciding whether an AI medical technology is launched should
also be based on weighing its social benefits and risks to health
care professionals. For instance, as clinical AI systems mature,
the quality of health care is expected to improve through reduced
human error and physician fatigue or burnout [27]. AI that can
perform routine clinical tasks might reduce physician workload
and improve the quality of care they provide by allowing for
increased time on more demanding responsibilities as well as
building rapport with patients. An example of this is an AI
medical technology that facilitates triaging and reviewing images
so ophthalmologists can spend more time performing surgeries
or discussing treatment plans with patients [27].

Industry Perspective
Regarding industry, a “Do No Harm” safety checklist would
favor AI medical tools that improve access to affordable quality
of care, ensure stakeholder safety, and promote product exposure
as well as use. For example, convolutional neural networks
trained on 129,450 clinical images recently achieved
dermatologist-level accuracy in diagnosing skin malignancy.
This deep learning algorithm also outperformed the average
dermatologist in assessing photographic and dermoscopic
images. Although its training phase might be expensive, this
AI tool can be deployed on mobile devices and potentially
improve accessibility of skin lesion screening at the expert level
globally [27].

Government Perspective
From a public health or government perspective, a social “Do
No Harm” safety checklist would favor AI medical technologies
that increase the scalability of affordable quality of care when
compared with the standard used. For example, a
histopathological assessment is considered the gold standard
for diagnosing multiple types of cancer [27]. However, there
are several limitations to this technique, which include
pathologist visual evaluation discrepancies, restricted scalability,
and underuse of histopathology image features (due to human
visual limitations) that help predict cancer survival outcomes
[27]. With the development of deep convolutional neural
networks, AI can be used to detect prostate cancer from biopsy
specimens, breast cancer metastasis in lymph nodes, and mitosis
in breast cancer. With an estimated net deficit of over 5700
full-time pathologists in the United States by 2030, an AI system
could offset this staff shortage, provide quick and objective
histopathology evaluations, and improve accessibility of patients
with cancer for quality care [27].
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Social (Access to Affordable Quality of Care) “No-Go”
Case
From a social (access to affordable quality of care) “Do No
Harm” perspective, not all developers of AI medical
technologies demonstrate stakeholder safety before launching
their product. For example, a study conducted in Thailand found
Google Health’s medical AI-trained tool used to identify signs
of DR in patients with diabetes actually reduced quality of care
as it was not designed for the clinical environments where it
was deployed [28]. Compared with the standard system used
in Thailand, nurses taking photos of patients’ eyes during
checkups and sending them for analysis by a specialist (a process
that can take up to 10 weeks), Google Health’s AI medical tool
was able to identify signs of DR from an eye scan with more
than 90% accuracy (human specialist level) and provide results
in less than 10 minutes. Nevertheless, this finding was based
on experimental lab results and not on a real-world setting [28].

After being deployed across 11 clinics spread throughout
Thailand, nurses using Google’s AI medical tool were
interviewed regarding their experience with it. When working,
it facilitated expedited eye scans. However, this AI technology
was trained on high-quality scans and rejected images below a
certain threshold [28]. With nurses scanning dozens of patients
each hour and often taking photos in poor lighting conditions,
over 20% of images were excluded. Patients with rejected
images were then informed to visit a specialist at another clinic
on another day, which was inconvenient if they took time-off
work for their appointment or had limited access to
transportation. Nurses also expressed frustration when they
believed rejected scans showed no signs of disease and
follow-up appointments were unnecessary [28]. Another concern
was the system had to upload images to the cloud for processing,
but limited internet connection in several sites caused delays
and hindered the industry and government’s efforts to provide
access to quality care in resource-poor settings [28].

How to Implement the BPES
Framework—A Novel Cost-Effective,
Time-Sensitive, and Stakeholder
Safety-Oriented Quantitative and
Qualitative Clinical Phased Trial Approach

Similar to clinical and drug intervention–based studies,
randomized controlled trials (RCTs) are considered the gold
standard for demonstrating the safety and efficacy of AI-based
medical technologies. However, only a limited number of AI
RCTs have been published or are registered [29]. Moreover,
the findings from these studies are often not generalizable

outside the study population and have a limited duration or
population size to assess long-term treatment as well as adverse
effects. Finally, the increasingly high cost of conducting RCTs
creates a dependency on proxy markers that may not correlate
well with study outcomes of interest and hinder industry research
as well as development due to financial risk [30].

As conducting RCTs can be challenging, other study designs
that provide valid evidence for clinical, industry, and public
health decision makers should be considered when assessing
the safety of launching an AI medical technology. For example,
matched cohort, quasi-experimental interrupted time series
analyses, prospective pre-and-post, and observational studies
can all generate evidence concerning an AI medical technology’s
safety and efficacy. Although findings from these study designs
might be considered of lower quality when compared with
RCTs, they create a compromise between the needs of
stakeholders (patients, health care professionals, and public
health institutions) seeking timely clinical safety and efficacy
knowledge as well as reduce the cost burden for industry [29].

Beyond quantitative studies to assess the safety and efficacy of
AI medical technologies, qualitative research approaches should
be used to provide context to the findings observed. For this
reason, we recommend a series of studies similar to the phases
used in drug trials to determine if an AI medical technology
meets the BPES framework’s safety criteria to be launched.
This can be achieved using a quantitative study design in the
initial phase (phase 1) to establish whether the AI medical
technology is as or more safe and efficacious from a BPES
perspective than the standard approach used. If phase 1 study
findings are positive, a second quantitative study design should
be conducted to capture long-term benefits and risks of the AI
tool (phase 2). Next, a qualitative study (phase 3) should be
performed to uncover any concerns or biases relating to the
technology as well as understand the social context of the
quantitative study results. Finally, the results of the phase 1 to
3 studies should be summarized and provided to a nation’s
health care regulatory agency (ie, Health Canada or the FDA)
for review and feedback (phase 4). These phases would ensure
a “Do No Harm” BPES safety approach is met and the AI
medical technology is safe to launch (Figure 2).

To guarantee, ethical conduct is performed across the study
phases, collaborations between industry and patients (via
participatory action research study designs and advocacy
groups), health care professionals (via academic institutions),
and governments (via regulatory agencies) are encouraged.
Although using a phase study approach might reduce the speed
of launching an AI medical technology, it ensures accountability
and transparency and aims to prevent harm to all stakeholders
involved.
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Figure 2. A novel 4-phase study trial approach for assessing whether to launch an AI-based medical technology using the BPES framework. AI:
artificial intelligence; BPES: biological-psychological, economic, and social; ML: machine learning.

Conclusions

The continued development of AI medical technologies
(hardware devices, software programs, and mobile apps) is
inevitable, but this does not mean there should be no
accountability for ensuring they are launched with stakeholder
safety in mind. Current frameworks often fail to focus on what
makes medicine multidimensional, which is the interactions
between patients, health care professionals, industry, and
government agencies vis-à-vis BPES factors that can cause and

mitigate medical conditions. To fully understand the potential
of these AI medical technologies, a framework that places
stakeholder safety from a BPES “Do No Harm” perspective is
needed. To our knowledge, the BPES framework is the first to
do this by placing the Hippocratic Oath of “Do No Harm” at
the center of developers, implementers, regulators, and users’
mindsets. Although validation of our framework is needed, its
compatibility with existing and future AI reporting guidelines
should allow industry AI technology developers, researchers,
and government regulatory agencies to explore its efficacy.
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