Cross-sectional studies

Atiporn Ingsahtit, MD., Ph.D. (Clin. Epid.)
Section of Clinical Epidemiology and Biostatistics
Faculty of Medicine Ramathibodi Hospital, Mahidol University

1

Concepts to take home

- Principle & types of cross-sectional study designs
- Advantages & disadvantages
- Prevalence, prevalence ratio, prevalence odds ratio
- Bias in cross-sectional studies
- Usefulness of cross-sectional studies

Principle of cross-sectional studies

- Conducted at a single point in time or over a short period of time (snapshot of population)
- Exposure status and disease status are measured at one point in time or over a period.
- Can be either descriptive or analytic, depend on design
 - Prevalence studies (descriptive cross-sectional study)
 - Comparison of prevalence among exposed and nonexposure (analytic cross-sectional study)

Analytic Cross-sectional Study

- *Comparative groups
- *One measurement, no follow up
- *Association?

Analytic Cross-sectional Study

ex+ 50 100 ex- 20 80

Relative prevalence O+ = (50/150)/(20/100)= 1.67

Association, no sequence

Types of cross-sectional studies

- Descriptive cross-sectional study
- Analytic cross-sectional study
- Repeated cross-sectional study

7

Cross-sectional studies

Descriptive

- Collected number of cases and number of total population.
- Can assess only prevalence of disease or other health events, also called "prevalence study".

Analytic

- Expose and disease status are assessed. simultaneously
- Can determine association between exposure and disease.

Descriptive cross-sectional study

- Measures prevalence of disease at a single point in time or over a short period of time. Two types:
 - Point prevalence: Do you currently use a NSAIDS?
 - Period prevalence: *Have you used a NSIADS* in the past 6 months?

9

Analytic cross-sectional study

- Measure association between expose and outcome.
- Expose and outcome are assessed simultaneously.
- Measure of association;
 - Prevalence ratio
 - Prevalence odds ratio

Measure of prevalence

Disease

prevalence =
$$\begin{array}{c|ccccc}
A+C & & & & & & & & & & \\
\hline
A+B+C+D & & & & & & & & & \\
\hline
A+B+C+D & & & & & & & & & \\
\end{array}$$

Prevalence of disease among exposure

Prevalence of disease among non-exposure

13

Measure of association

Disease

1. Prevalence ratio

		Yes	No
	Yes	_	_
Risk		Α	В
Factor	No	С	D

Prevalence of disease among exposure
 Prevalence of disease among non-exposure

$$= \frac{A}{A+B} / \frac{C}{C+D}$$

Measure of association

2. Prevalence odds ratio

Odds of exposure among cases

 Yes
 No

 Risk
 A
 B

 Factor
 No
 C
 D

Disease

• Odds of exposure among non-cases

A+C

A+C

Prevalence odds ratio (OR)

- Odds of exposure among cases
 Odds of exposure among non-cases
- = AD/BC

15

Example: Medical exam & X-rays to diagnose osteoarthritis of the knee

Osteoarthritis

yes no

yes no

80 20 100

40 60 100

Prevalence ratio

prevalence of osteoarthritis: 120/200 = 0.6

Prevalence of osteoarthritis among obese subjects: 80/100 = 0.8

Prevalence of osteoarthritis among non-obese subjects: 40/100 = 0.4

Prevalence ratio = 0.8/0.4 = 2.0

Interpretration: the proportion of people with OA is 2-fold greater if a person is obesity

17

Prevalence odds ratio

Prevalence odds ratio

$$= 80 \times 60 = 6.0$$

Interpretation:

The odds that OA patients would be obesity appear to be about 6 times the odds that non-OA patients would be obesity.

The estimated OA diagnosis among the obese subjects is 6.0 times greater than that among the non-obese.

Repeated cross-sectional study

- Exposure and disease are determined at baseline and reassessed throughout a period of follow-up.
- Distinction between repeated crosssectional study & longitudinal , prospective cohort

Re	peate	d cro	ss-sect	tional	data	
AGE (yr) 40	А	В	С	D	E	
35	В	С	D	E	F	
30	С	D	E	F	G	
25	D	E	F	G	Н	
20	E	F	G	Н	I	
	1985	1990	1990 1995 Year		2005	

L	ongit	udina	l or co	hort c	lata	
AGE (yr) 40	А	В	С	D	E	
35	В	С	D	E	F	
30	С	D	E	F	G	
25	D	E	F	G	Н	
20	E	F	G	Н	I	
	1985	1990	1995 Year	2000	2005	I

Advantages of cross-sectional studies

- Good for describing the magnitude and distribution of health problems.
- Generalizable results if population based sample
- Quick, conducted over short period of time, easy, inexpensive.
- Can study multiple exposures and disease outcomes simultaneously.

Disadvantages of cross-sectional studies

- Cannot establish sequence of events
 - Not for causation or prognosis
- Impractical for rare diseases if pop based sample (eg, gastric CA 1/10,000).
- Possible bias since only survivors are available for study

Bias in Cross-Sectional Studies

- 1. Selection bias
 - Sampling bias: representativeness
 - Prevalence-incidence bias (Neyman bias)
 - Response and non-response bias
- 2. Measurement bias
 - Misclassified (misdiagnosed, undiagnosed)
 - Recall bias
 - Lead-time bias
 - Length biased sampling
- 3. Confounding

25

Sampling in Epidemiology

- Definitions
 - Sampling unit the basic unit around which a sampling procedure is planned
 - □ Person
 - □ Group household, school, district, etc.
 - □ Component eye, physiological response
 - Sampling frame list of all of the sampling units in a population
 - Sample collection of sampling units from the eligible population

- **■** Probability Sample
 - Simple random sample
 - Stratified random sample
 - Cluster sample
 - Multistage sample
 - Systematic sample

- **■** Non-probability Sample
 - Convenience sample
 - Consecutive sample
 - Quota sample
 - Volunteer sample

PROBABILITY SAMPLE

- Simple random sampling
 - Each sampling unit has an equal chance of being included in the is sample
 - In epidemiology, sampling generally done without replacement as this approach allows for a wider coverage of sampling units, and as a result smaller standard errors

- Stratified random sample
 - The sampling frame comprises groups, or strata, with certain characteristics
 - A sample of units are selected from each group or stratum

- Cluster sampling
 - Clusters of sampling units are first selected randomly
 - Individual sampling units are then selected from within each cluster

- Multistage sampling
- Similar to cluster sampling except that there are two sampling events, instead of one
 - Primary units are randomly selected
 - Individual units within primary units randomly selected for measurement

- Systematic sampling
 - The sampling units are spaced regularly throughout the sampling frame, e.g., every 3rd unit would be selected
 - May be used as either probability sample or not
 - Not a probability sample unless the starting point is randomly selected
 - Non-random sample if the starting point is determined by some other mechanism than chance

NON-PROBABILITY SAMPLE

37

Sampling in Epidemiology

- **■** Convenience sample
 - Case series of patients with a particular condition at a certain hospital
 - "Normal" graduate students walking down the hall are asked to donate blood for a study
 - Children with febrile seizures reporting to an emergency room

Investigator decides who is enrolled in a study

- Consecutive sample
 - A case series of <u>consecutive</u> patients with a condition of interest
 - Consecutive series means ALL patients with the condition within hospital or clinic, not just the patients the investigators happen to know about
- Advantages
 - Removes investigator from deciding who enters a study
 - Requires protocol with definitions of condition of interest
 - Straightforward way to enroll subjects
- Disadvantage
 - Non-random

Sampling in Epidemiology

• Quota sampling:

selecting fixed numbers of units in each of a number of categories.

QUOTA SAMPLING

- Researcher uses some knowledge of the population to build some representativeness into the sampling plan
- divides population into different strata and samples from each of them
- USUALLY BETTER THAN JUST CONVENIENCE

Prevalence-incidence bias (Neyman bias)

It arises when a gap in time occurs between exposure and selection of study subjects.

41

Neyman bias example

- The study of myocardial infarction and snow shovelling (the exposure of interest) would miss individuals who died in their driveways and thus never reached a hospital.
- This eventuality might greatly lower the association of infarction associated with this strenuous activity.

Prevalence-incidence bias (Neyman bias)

Framingham study

	Ir	ncidence		Prevalence			
	Developed CHD by exam 6	Did not develop CHD by exam 6	Total	CHD present at exam 6	No CHD present at exam 6	Total	
High serum cholesterol	85	462	547	38	34	72	
Low serum cholesterol	116	1511	1627	113	117	230	
	201	1973	2174	151	151	302	
ORs		2.40			1.16		

Friedman et al. Amer J Epid 1966;83:366

43

Lead-time bias

Lead-time Bias

With screening, the lead time in diagnosis prolongs survival even if death is not delayed.

- $\ ^{\boxdot}$ Lung cancer-specific survival is measured from the time of diagnosis (Dx) of lung cancer to the time of death.
- If a lung cancer is screen-detected before symptoms (Sx), then the lead time in diagnosis equals the length of time between screening detection and when the first signs/symptoms would have appeared.
- Even if early treatment had no benefit, the survival of screened persons would be longer simply by the addition of the lead time.

Length biased sampling

Length biased sampling: diseases that have long duration will overrepresent the magnitude of illness while short duration will underrepresent illness

45

Length bias

Length Bias

- The cancers that grow slowly are easier to detect because they have a longer pre-symptomatic period of time when they are detectable
- Thus, the screening test detects more slowly growing cancers.

Usefulness of cross-sectional study design

- Diagnostic test
- Prevalence study
 - Describe distribution of variables
 - Health care services
- Examine associations among variables
 - Hypothesis generating for causal links
- Prediction score

47

Accuracy of a Test Result

		Dise	ase	
		Yes	No	
	Positive	a	b	
		True positive	False positive	
Test	Negative	c	d	
		False negative	True negative	
				a+b+c+d

Sensitivity = true positive rate = a / a + c Specificity = true negative rate = d / b + d

Accuracy of a Test Result

Test	Disease	No disease	Total	EST	CAD	No	Total
+	a	b	a+b	+	80	10	90
-	С	d	c+d	-	20	90	110
	a+c	b+d	n		100	100	200
7	Гегт	General	Example		Definition		ı
Sensit	rivity	a/(a+c)	80/100 (80%)		Proportion of who have a p		e condition
Specif	ficity	B/(b+d)	90/100 (90%)		Proportion of condition wh		
Accur	acy	a+d/n	170/200 (85%)		Proportion of	accurate diag	nostic test
Positive value	tive predictive $a/(a+b)$		80/9	80/90 (90%) Proportion of those with a push who have the condition		positive test	
Negative value	e predictive	d/(c+d)	90/1	10 (82%)	Proportion of who do not h		

Accuracy of a Test Result

- Sensitivity: Is the test detecting true cases of disease?
 - (Ideal is 100%: 100% of cases are detected)
- Specificity: Is the test excluding those without disease?
 - (Ideal is 100%: 100% of non-cases are negative)

Steps of conducting cross-sectional study **Questions to ask** Steps to take **Important** elements/step What is the • Problem identification Choose the problem and • Prioritizing problem problem and why should it be Problem analysis analysis it studied? What information • Literature and other Literature available information is already review available • General and What do we Formulation of hope to specific objectives objectives achieve? Hypothesis 51

Questions to ask Steps to take **Important** elements/step What resource Money Resource do we need? Personnel identification • Materials, equipment and acquisition Proposal How will we use summary, the results paper, and presentation Source: Step in design of a cross-sectional study (Modified from Varkevisser et al)

โครงการวิจัย การประมาณความชุกของโรคไตเรื้อรัง ในประชากรไทย

Screening and Early Evaluation of Kidney Disease Thai-SEEK project

Nephrol Dial Transplant (2010) 25: 1567–1575 doi: 10.1093/ndt/gfp669 Advance Access publication 27 December 2009

Prevalence and risk factors of chronic kidney disease in the Thai adult population: Thai SEEK study

Atiporn Ingsathit¹, Ammarin Thakkinstian¹, Amnart Chaiprasert², Pornpen Sangthawan³, Pongsathorn Gojaseni⁴, Kriwiporn Kiattisunthorn⁵, Leena Ongaiyooth⁵, Somlak Vanavanan⁶, Dhavee Sirivongs⁷, Prapaipim Thirakhupt⁸, Bharati Mittal⁹, Ajay K. Singh⁹ and the Thai-SEEK Group

¹Section for Clinical Epidemiology and Biostatistics, Research Center, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand, ²Division of Nephrology, Department of Medicine, Phramongkutklao Hospital, Bangkok, Thailand, ³Division of Nephrology, Department of Medicine, Faculty of Medicine, Prince of Songkla University, Songkla, Thailand, ⁴Division of Nephrology, Department of Medicine, Bhumibol Adulyadej Hospital, Bangkok, Thailand, ⁵Division of Nephrology, Department of Medicine, Faculty of Medicine, Siriraj Medical School and Hospital, Mahidol University, Bangkok, Thailand, ⁶Division of Clinical Chemistry, Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand, ⁷Division of Nephrology, Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand, ⁸Division of Nephrology, Department of Pediatrics, Phramongkutklao Hospital, Bangkok, Thailand and ⁹Renal Division, Brigham and Women's Hospital and Harvard Medical School, Boston, USA

Correspondence and offprint requests to: Atiporn Ingsathit; E-mail: teait@mahidol.ac.th

Primary objective

 To describe the distribution of CKD stages and severity

Methodology

■ Study design: Cross-sectional study

■ Study period: August 2007 to January

2009

The study was approved by the IRB of the Faculty of Medicine at Ramathibodi Hospital, Mahidol University

Study subjects

- Inclusion criteria
 - Aged 18 or older
 - No menstruation period
 - No fever for at least a week before examination date
 - Willingness to participate and provide a signed consent form
- Exclusion criteria
 - Blood or urine specimens were not taken

Sample size estimation

- Prevalence from previous studies 3%-13.7%
- Type I error = 0.05
- Design effect = 3
- Calculate 95% CI
 - Sample size 4,000 95% CI = 11.9-15.7
 - Sample size 3,000 95%CI = 11.7-16.0

Sample size estimation

- Prevalence from previous studies 3%-13.7%
- Type I error = 0.05
- Design effect = 3
- Calculate 95% CI
 - Sample size 4,000 95% CI = 11.9-15.7
 - Sample size 3,000 95%CI = 11.7-16.8

ภาค	ขนาดประ ชากร	ขนาดตัว อย่างต่อ ภาค	จำนวน จังหวัด ตัวอย่าง	ขนาดตัว อย่างของ จังหวัด	จังหวัดตัวอย่าง	อำเภอตัวอย่าง	ขนาดตัว อย่างของ อำเภอ+10%
กทม	5658953	272	1	272	กรุงเทพมหานคร	พระนคร,วัฒนา	150
กลาง	15030613	722	2	361	ซลบุรี	พานทอง,สัตหีบ	199
				361	ลพบุรี	พัฒนานิคม,ท่า หลวง	199
เหนือ	11883517	571	2	286	พะเยา	เมือง,จุน	157
				286	แพร่	สูงเม่น,สอง	157
ตะวัน ออก	21328112	1025	3	342	มหาสารคาม	นาเชือก,วาปีปทุม	188
เฉียง				342	หนองบัวลำภู	นาวัง, นากลาง	188
เหนือ				342	สกลนคร	นิคมน้ำอูน, กุสุมาลย์	188
ใต้	8516860	409	2	205	ภูเก็ต	เมือง,ถลาง	113
				205	สงขลา	สิงหนคร,นาหม่อม	113
รวม	62418056	3000	10	-			

Measurement

- Serum creatinine: Standardized with IDMS method
- Urine albumin: Immunoturbidimetry
- Hematuria: Trained technician at site

Pre-camp training

Camp day

Station 1 Inform consent

Station 2 Registration

Station 3 Blood sample collection

Station 4 Urine sample collection

Station 5 Interview

Station 6 Physical examination

Station 7 Education

Material

Station 8 Check point for completeness

RESULTS

CKD prevalence in Thai population

Thai SEEK study

3,459 general population

Age 45.2 (0.8), Male 45.3%

	CKD staging								Overall N=3459
	I		II	III		IV+			N-3439
No*	Prevalence* (95%CI)	No ·	Prevalence (95%CI)	No.	Prevalenc e(95%CI)	No ·	Prevalence (95%CI)	No.	Prevalence (95%CI)
134	3.3	207	5.6	248	7.5	37	1.1	626	17.5
	(2.5, 4.1)		(4.2, 7.0)		(6.2, 8.8)		(0.7, 01.5)		(14.6, 20.4)
	8.9 (6.8	, 11.0))		8.6 (7.	0, 10	.3)		

Atiporn Ingsathit, et al. Nephrol Dial Transplant. 2010 May;25(5):1567-75

Projection of expected numbers of adult population

Thai SEEK study

Risk factors associated with CKD

Factors		CKD	group	Adjusted OR			
	Stage	I-V	No C	CKD	OR (95% CI)	p-value	
	number	%	number	%			
Age, year							
≥ 70	139	22.26	128	4.08	7.34 (4.18, 12.90)	< 0.001	
60 - 69	148	22.85	255	9.40	3.63 (2.26, 5.86)	0.001	
40 - 59	237	39.19	1,227	43.85	1.71 (1.16, 2.52)	0.017	
< 40	102	15.70	1,223	42.67	1		
History of kidney stone	74	11.30	95	3.72	2.72 (1.80, 4.12)	0.002	
DM	183	28.48	251	8.40	2.72 (1.57, 4.73)	0.005	
Hypertension Uric acid, mg/dl	329	53.60	626	21.99	1.96 (1.44, 2.67)	0.002	
> 5.61	331	55.03	938	35.09	2.87 (1.77, 4.64)	0.002	
4.40 - 5.61	166	26.58	960	33.49	1.50 (0.92, 2.46)	0.087	
< 4.40	129	18.39	935	31.42	1		
Using traditional medicine	263	42.65	880	31.55	1.20 (1.02, 1.42)	0.035	
Sex							
Female	356	57.77	1,534	53.86	1.70 (1.18, 2.43)	0.013	
Male	270	42.23	1,299	46.14	1		

Cross-sectional Design

Rapid, Easy Causal relationship

Co-operative Rare diseases

Inexpensive Not incidence

Prevalence study

First step of cohort

Cross-sectional association

Blinded: single

Summary

- Principle & types of cross-sectional study designs
- Advantages & disadvantages
- Prevalence, prevalence ratio, prevalence odds ratio
- Bias in cross-sectional studies
- Usefulness of cross-sectional studies